
A Decision Procedure for Autonomous Agents to Reason about Interaction with
Humans

Michael Fleming
Faculty of Computer Science
University of New Brunswick

Fredericton, NB, Canada
E3B 5A3

mwf@unb.ca

Robin Cohen
School of Computer Science

University of Waterloo
Waterloo, ON, Canada

N2L 3G1
rcohen@uwaterloo.ca

Abstract

In this paper, we present computational models for the design
of autonomous agents that can make rational decisions about
interaction with potentially helpful users. One challenge in
designing these agents is to specify when the agent should
take the initiative to interact with the user. We propose spe-
cific factors that must be modeled, as well as methods for how
to combine these factors in order to make rational decisions
about interaction, based on whether the perceived benefits of
communication exceed the expected costs.

Introduction
Autonomous systems are designed to perform tasks on be-
half of users, working with input provided initially by a hu-
man user, but operating independently afterwards. Under
certain circumstances, however, these systems may reason
that it is beneficial to acquire further information from the
human, either because the environment has changed unex-
pectedly or simply because the system is sufficiently uncer-
tain that its proposed problem solving will really meet the
needs of the human. Our research aims to provide a deci-
sion procedure for systems to reason about interaction with
humans, regardless of the area of the application.

Our approach is to model both the benefits and the costs
of the possible interaction, and to have the system interact
only if the benefits outweigh the costs. This is achieved by
simultaneously modeling the system’s perception of the hu-
man user in a user model, the system’s perception of the
current state of the dialogue and the system’s perception of
the state of the problem solving represented in a task model.

In this paper, we outline a specific proposal for what to
model in order to reason about interaction, leading to ex-
changes that are efficient and meaningful. We also show
how this decision procedure is designed to be sensitive to
the current state of the system and, as such, is capable of
responding to changing situations in the environment.

A Model for Reasoning about Interaction
Consider a scenario where an autonomous agent has been
designed to perform a task on behalf of a human. In situa-
tions where both the human and the system can take the ini-
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tiative to direct the problem solving or to engage in dialogue,
to further advance the problem solving, this arrangement is
typically referred to as a mixed-initiative system (see, for
instance, (Kortenkamp et al. 1997; Cox & Veloso 1997)).
Most designers, however, have simply come up with their
own domain-specific mixed-initiative solutions to their par-
ticular problem of interest. What is needed is a principled
method for designing such systems: one that takes into ac-
count information about the task, the user and the dialogue
simultaneously.

To begin, consider the general situation in which an arti-
ficial intelligence system might find itself at any given time.
It is common practice in artificial intelligence to speak of the
system’s current state. A state representation should capture
everything that a system needs to know to distinguish its cur-
rent situation from any other situation in which it might find
itself while performing a task. It will be proposed here that
the current state of any interactive system should depend on
a number of factors, each of which can be classified as be-
longing to one of three general components of the system:
the task model, user model, and dialogue model.

The various factors then need to be modelled in order to
measure the relative benefits and costs of interacting with
the user. These factors are summarized in Table 1 below.

Factor Model
The user’s knowledge UM

The user’s willingness to interact UM
The user’s preferences/utility function UM, TM

Tolerance for suboptimality UM, TM
Current context and expected DM

understandability of system utterance
Previous interactions DM

The expected improvement of the system’s TM
task performance due to interaction

Time and time criticality TM
Resource costs and other task-specific costs TM

Table 1: Summary of factors to be used in model



Single-Decision Problem
A certain class of problems can be viewed as “single-
decision”; in other words, from an initial state, the system
decides about interacting with the user, then makes a deci-
sion about what action to perform and then takes that action
to complete the task.

Our general approach to reasoning about interaction in
these environments is as follows.

Given a question that the system is considering asking the
user, perform the following steps.

1. Determine the expected benefits of interacting with the
user. More specifically, determine by how much the sys-
tem’s performance on the task is expected to improve (if
at all) after asking the user the question.

2. Determine the expected costs of the interaction.

3. Proceed with the interaction only if the benefits exceed
the costs.

Benefits The following formula is used for computing the
benefits of interaction. Let EUask represent the expected
utility of the outcome(s) that would result if the system did
ask the user the question and then chose an action based in
part on the user’s response. Let EU¬ask represent the ex-
pected utility of the outcome(s) that would result from the
system making its decision without any further interaction.
Then, the benefits are computed simply by taking the differ-
ence between these two values.

Benefits = EUask − EU¬ask

When we mention utility in this context, we are referring
to the expected value of the problem solution that is reached
in some final state. This does not take into account any costs
that might be involved in reaching the solution. As will be
seen soon, such costs are treated separately in our model.

EUask and EU¬ask themselves are computed by sum-
ming over the possible outcomes in each case, weighted by
the probability of each outcome.

Let us begin with EU¬ask, the expected utility of the
action that the system would take without any further in-
teraction. For each possible non-communicative action in
the set Actions that the system is able to perform, it com-
putes the expected utility of that action by summing over
the utilities of all possible outcomes of the action, weighted
by the probabilities of each of those outcomes. The ratio-
nal action for the system to choose is then the action with
the highest expected utility; EU¬ask is equal to the ex-
pected utility of this best possible action. In the equation
below, P (Resulti(A)) replaces P (Resulti(A)|E,Do(A)),
the probability that Resulti(A) would occur given that the
agent has gathered evidence E about the world and has per-
formed action A. This simplification is made to improve the
readability of this formula and others to follow in this sec-
tion.

EU¬ask = max
A∈Actions

EU(A)

= max
A∈Actions

(
∑

i
P (Resulti(A)) × U(Resulti(A)))

To calculate EUask, the expected utility of the outcome
that will result if we do interact with the user, we introduce
a new variable. Let PUK represent the probability that the
user will actually have the knowledge required to answer
the question. Also, let Resp represent the set of possible
responses to the question. Then EUask is computed as:

EUask = PUK [EU(if user knows)]
+(1 − PUK)[EU(if user does not know)]

= PUK

∑

r∈Resp

P (Resp = r)EU(S’s action|Resp = r)

+(1 − PUK)EU¬ask

In words, EUask is the sum of two terms. The second of
these terms captures the case in which the user is unable to
answer the question. In this case (occurring with probability
1 − PUK), the system would simply fall back on what it
would have done without interacting (with expected utility
EU¬ask). The first term considers the case in which the
user is able to answer the question (probability PUK). The
expected value of the system’s actions in this case is found
by considering all the possible responses that the user might
give and the expected utility of the action that the system
would take in each of those cases.

In the formula above, EU(S’s action|Resp = r) is calcu-
lated by taking the maximum of the expected utilities of all
possible actions.

max
A∈Actions

(

∑

i

P (Resulti(A)) × U(Resulti(A))

)

Costs The costs of interaction in our model are repre-
sented using a linear model: the total cost is a weighted sum
of any individual cost measures Ci that have been identified
for the application domain. Each of these factors is normal-
ized so that the possible values range from 0 to 100, with a
cost of 0 indicating no cost at all and a cost of 100 represent-
ing the maximum possible cost in this application domain.

Costs =
∑

i

wiCi

Note that each of these cost measures Ci is actually a cost
function that might depend on the current state, on the par-
ticular action or question being considered, and/or on certain
components of the user model.

In the subsequent example, the cost of interaction will be
measured by a weighted sum of only two cost factors: t,
the cost associated with the estimated time required for the
interaction, and b, the cost associated with bothering the user
in the current situation.

A single-decision example We will now present a sim-
ple example to illustrate the application of our model to
decision-making about interaction.

In this example, the system has been asked to plan a travel
route for the user to get from City A to City B. It determines
that it has the choice between two different paths. According
to the system’s knowledge, path 1 is shorter but is congested
(due to heavy traffic) about 50% of the time. Path 2 is sig-
nificantly longer, but it is never busy.



For the purpose of this example, we assume that the sys-
tem has access to a utility function for this type of situation.
The utility function assigns a value to each possible outcome
in the domain, where an outcome consists of the decision
that was made by the system (which route did it choose to
take?) and the actual state of the world (was path 1 in fact
congested?). For example, one outcome would be that the
system opted to take path 1, but found that it turned out to
be busy and, therefore, slow.

The values assigned by the utility function in this example
are meant to capture the attitudes of the average user toward
different possible outcomes in this domain, and are shown
in Table 2.

The ideal outcome in this example would be if we were
to choose path 1 and if it were to turn out to be clear. The
worst outcome would involve choosing path 1 and then find-
ing out that it is congested. In between these two extremes,
choosing path 2 is a fairly safe decision, but we would be
somewhat less pleased if we were to choose path 2 when, in
fact, the shorter path had been available.

System’s choice Actual state of Utility
path 1

Path 1 Path 1 clear 100
Path 1 Path 1 busy 0
Path 2 Path 1 clear 50
Path 2 Path 1 busy 70

Table 2: Utility function for path example

Now, suppose that we believe that the user might have
access to recent traffic information and could therefore help
with the decision-making. We believe that there is a 60%
chance that the user has accurate traffic information.

To make the problem slightly more interesting, we will
assume that there is an additional 10% chance that the user
has traffic information that turns out to be incorrect.

The remaining 30% is assigned to the case in which the
user states that he has no additional traffic information. In
this case, the system should fall back on what it would have
done without asking the user.

Let us first consider the decision that the system would
make in the absence of any further information from the
user. In other words, we want to compute the value of
EU¬ask, the expected utility of the best action the system
could take if it did not ask the user the question.

There are two possible actions in this simple example:
choose path 1 or choose path 2. According to the problem
description above, there is a 50% chance that path 1 will be
congested. The expected utility of choosing path 1 is com-
puted as follows:

EU (A = path 1)
=
∑

i
P (Resulti(A)) × U(Resulti(A))

= P (path 1 clear) × U(A =path 1 ∧ path 1 clear)
+P (path 1 busy) × U(A =path 1 ∧ path 1 busy)

= 0.5 (100) + 0.5 (0)
= 50

Similarly, the expected utility of path 2 depends on the
system’s current beliefs about the state of path 1.

EU(A =path 2)
= P (path 1 clear) × U(A =path 2 ∧ path 1 clear)

+P (path 1 busy) × U(A =path 2 ∧ path 1 busy)
= 0.5 (50) + 0.5 (70)
= 60

EU¬ask = max
A∈Actions

EU(A)

= max(50, 60)
= 60

Therefore, with no additional information, it appears that
the best solution for the system is to play it safe and choose
path 2, since the expected utility of path 2 is higher than the
expected utility of path 1.

Now that we know the expected utility of what the system
could do on its own, let us consider the possible outcomes
if the system were to ask the user for further information.
Table 3 summarizes the possible scenarios that might arise.

User resp. Actual state Prob. S’s choice Util.
of path 1

Path 1 clear Path 1 clear 0.30 Path 1 100
Path 1 clear Path 1 busy 0.05 Path 1 0
Path 1 busy Path 1 clear 0.05 Path 2 50
Path 1 busy Path 1 busy 0.30 Path 2 70
No answer Path 1 clear 0.15 Path 2 50
No answer Path 1 busy 0.15 Path 2 70
Overall expected utility of system choice after asking 71.5

Table 3: Possible scenarios in path-choosing example

The probabilities in Table 3 are computed by considering
both the system’s beliefs about whether or not the user will
have the knowledge and the system’s prior beliefs about the
actual state of the path. For example, the system believes
that the user will know the correct answer with a probability
of 0.6. Since the system initially believed that path 1 was
equally likely to be clear or congested, there is a probability
of 0.3 of the user correctly saying that the path is clear (Row
1) and a probability of 0.3 of the user correctly saying that it
is busy (Row 4).

The overall expected utility (71.5) shown in the final row
of Table 3 is computed by summing over all the possible out-
comes, weighted by their probabilities. This tells us that, in
the average case, interacting with the user will lead the sys-
tem to a choice with an expected utility of 71.5. Recall that,
without asking the user, the expected utility of the system’s
best action – simply choosing path 2 as a safe route – was
60.

Our conclusion is that, despite the fact that the user might
not know the answer or might even mislead the system, there
is a clear expected benefit to requesting the additional infor-
mation from the user. We represent this benefit by looking
at the expected gain in performance on the task if we were to
interact – in other words, by taking the difference between



the expected utility after interaction and the expected util-
ity of the system’s default action in the absence of further
interaction.

In this example,

Benefits = EUask − EU¬ask = 71.5 − 60 = 11.5

Costs of interaction It is important now to consider the
fact that there are also costs involved in interacting with the
user.

As presented earlier, costs are calculated with a weighted
sum over all cost measures Ci that have been identified for
the domain.

Costs =
∑

i

wiCi

In this example, the cost of interaction will be measured
by a weighted sum of two cost factors: t, the cost associated
with the extra time required for the interaction, and b, the
cost associated with bothering the user in the current situa-
tion. To keep this example simple, we will simply state that
the time cost is 10 on a scale of 0 to 100 (the interaction will
not take long at all), the bother cost is 10 (the communica-
tion will not be perceived by the user as being very bother-
some), and the weights associated with time and bother are
0.2 and 0.3, respectively.

Assuming these values, the total cost associated with the
interaction is:

Costs = wtt + wbb
= 0.2(10) + 0.3(10)
= 5

Since the benefits of interaction were computed earlier to
be 11.5, the benefits outweigh the costs and our system’s
optimal decision would be to proceed with the interaction
with the user.

Table 4 shows some variations on the above example,
demonstrating how the system’s decisions about interaction
are affected by modifying the values of the relevant factors.
For example, while the first row summarizes the earlier ex-
ample, the second row shows that if the system had believed
that the user was not very likely at all to be able to answer
the question (with all other factors remaining unchanged),
the ultimate decision would have been instead to forgo in-
teraction. The third and fourth rows show that if the sce-
nario had been changed so that the system is initially almost
certain that Path 1 is clear or almost certain that it is con-
gested, then interacting would not be beneficial at all.1 The
fifth row shows a case where, despite the fact that the system
was initially quite sure about the state of path 1, it still de-
cides to interact because it is certain that the user will know
the answer. The final two rows demonstrate the effects of
modifying the values of the two cost factors.

1The negative value for benefits in fact demonstrates that the
system would likely decrease its performance on the task if it were
to ask the user, since the likelihood of obtaining new information
is quite low and since there is a chance of actually being misled by
the user’s response.

The utilities of the possible outcomes are assumed to be
the same in all cases.

PUK Prob. t b EUask, Ben. Costs Ask?
P1 EU¬ask

clear
0.6 0.5 10 10 71.5, 60 11.5 5 Yes
0.2 0.5 10 10 61.5, 60 1.5 5 No
0.6 0.9 10 10 89.7, 90 -0.3 5 No
0.6 0.1 10 10 64.7, 68 -3.3 5 No
1.0 0.9 10 10 97, 90 7 5 Yes
0.6 0.5 50 10 71.5, 60 11.5 13 No
0.6 0.5 10 40 71.5, 60 11.5 14 No

Table 4: Variations on path-choosing example

Extended Modeling of Costs
In cases where the system may be interacting with the user
multiple times within a given system-user dialogue, we can
build on the proposed solution, continuing to model user
model, task model and dialogue model factors and to weigh
benefits against costs in order to determine whether to inter-
act.

Some additional issues arise, however. First of all, it is
important to develop more detailed models of the inherent
costs of interaction.

The actual cost associated with bothering the user with
a particular question should depend on a user-defined will-
ingness factor w, measured on a scale from 0 to 10. In
the single-decision example, this willingness factor is the
only concern when it comes to estimating the cost of both-
ering the user. However, in a sequential decision problem,
the bother cost should also incorporate a measure of how
much the user has been bothered in the dialogue so far. In
essence, recent interruptions and difficult questions should
carry more weight than interruptions in the distant past and
very straightforward questions. Further research effort must
be devoted to determining an appropriate function for the
cost of bothering the user. However, according to the desired
behaviour just described, we propose the following function
for the bother cost.

For every past interaction I with the user, let t(I) be the
amount of time that has elapsed since that interaction. The
specific implementation assumed in this paper involves di-
viding time into discrete time steps and using the number
of steps as the value for t(I).2 Let c(I) be an estimate of
how bothersome the interaction actually was, in terms of the
cognitive effort required of the user to answer the questions.
Then, we use the formula

(Bother so far)BSF =
∑

I

c(I)βt(I)

2In domains where time is better treated as a continuous vari-
able, the system designer can adjust the formula so that t(I) is the
actual time elapsed divided by some pre-determined constant.



to give us an idea of how bothersome the dialogue has been
so far. The term β is a discount factor, 0 < β ≤ 1, that
is used to accomplish the goal of diminishing the impact of
interactions that took place a long time ago.

Suppose we bothered the user 2 time steps ago, 7 time
steps ago and 13 time steps ago. Assuming that each interac-
tion had a cost3 of c(I) = 1 and that β = 0.95, our estimate
of “bother so far” BSF is 0.952 + 0.957 + 0.9513 = 2.11.

The willingness of the user to interact (the variable w, on
a scale of 0 to 10, introduced earlier) is then incorporated as
follows. We define two new terms α = 1.26 − 0.05w and
Init = 10 − w. 4 The bother cost is then computed as

bother = Init +
1 − αBSF

1 − α

Suppose, for example, that the user is a very willing one,
with w = 9. Then α would be 1.26 − 0.05w = 0.81. If the
bother so far is computed to be 2.11 as shown above, then
the cost of bothering would be

bother = Init + 1−α
BSF

1−α
= 1 + 1−0.812.11

1−0.81 = 2.89
If we had bothered the user more frequently and more re-

cently, say at 1,4,6,9 and 15 time steps ago, then the bother
so far would be 3.59 and the cost of bothering would be 3.79.

For a less willing user (one with w = 1), the bother costs
for the same two situations described above would work out
to be 11.36 and 13.68, respectively.

Another important aspect to the consideration of costs of
interaction is the consumption of system resources. For ex-
ample, in some domains, the system (1) might have to per-
form several database queries (which might come at some
cost), (2) might have to communicate with other agents if in-
formation cannot be obtained from a user (bother cost analo-
gous to the user bother, plus cost of communication channel,
etc.), (3) might have to use CPU time, memory, disk space
and other computational resources.

These costs will be domain-specific, but any that are
deemed to be relevant should be incorporated as a factor Ci

in the costs formula introduced earlier:

Costs =
∑

i

wiCi

This is especially important when comparing the value
of asking the user a question and the value of performing
other actions to try to obtain this information. Interaction
with the user might take some time and might inconvenience

3In this example, we assume that all interactions are equally
costly; for some domains, system designers might choose to make
certain types of questions more or less costly.

4These are simply suggested values; the system designer might
consider doing some empirical research to determine the most ap-
propriate values for a given domain. The proposed formula for α

is intended to give a nearly linear bother curve for users with mod-
erate willingness values and bother curves with more exponential
and logarithmic appearances, respectively, for more unwilling and
willing users. The value of Init is intended to reflect the cost of
bothering a user for the first time. Our choice for Init assumes
that this cost will be negligible for a very willing user (w = 10)
and quite high for an unwilling user (w = 0).

the user. However, if the information involved is essential
for the system, and if the only alternative to asking the user
is an extremely expensive query to a remote database, then
the interaction with the user should turn out to be the better
choice.

Multiple Decision Problems
Most autonomous agents will in fact have to reason about
interacting with the human at several points in their process-
ing. In (Fleming 2003), we discuss various options for go-
ing beyond the single decision case. We summarize these
briefly, in this section.

One possibility is to use a Markov Decision Process
(MDP), using strategies such as value iteration to determine
the optimal policy of an agent. In this scenario, it will still be
important to model various user-specific factors and various
costs, to determine whether it is beneficial to initiate inter-
action. The expected utility of actions will be affected by
the probability that the user will know the information be-
ing requested, the cost of bothering the user at this point in
the dialogue and the cost of losing time due to the proposed
interaction, for example.

There are some difficulties in using MDPs, however. The
agent’s state representation must include information from
the user model and from the dialogue history. This results in
possibly explosive state spaces.

An alternative approach is to make use of current infor-
mation available to the system, without projecting into the
future. This so-called information-theoretic approach sets
the value of interaction to be:

Value of question = κ × PUK × Importance × Uncertainty

Importance captures how critical it is to answer this par-
ticular question. As importance increases, the system be-
comes more likely to interact with the user. The same is
true for uncertainty (if the question to be asked has n pos-
sible answers and one is very likely to be true, then there
is less value to interaction). Again, all of this calculation is
tempered by a model of whether the user will indeed have
the knowledge being requested. κ is a constant intended to
place benefits and costs on the same scale; more details can
be found in (Fleming 2003).

We have then formulated a design procedure for those de-
signing systems of autonomous agents, to select the most
appropriate decision process for reasoning about interaction,
based on whether the single decision case is appropriate or
whether there is a potential for difficulties in employing a
MDP model for multiple decisions. Once more, the details
are omitted here but can be seen in (Fleming 2003).

To gain a deeper understanding of the alternative
information-theoretic model, consider again the simple
path-choosing example. The question that was being con-
sidered in that example was a simple question with only
two possible answers and with the system believing that
those two answers were equally likely. Therefore, we can
use the information-theoretic approach to measuring uncer-



tainty. The information content5 of the question is:

I

(

1

2
,
1

2

)

= −
1

2
log2

1

2
−

1

2
log2

1

2
= 1 bit

.
As specified in the original description of the example, the

probability of the user actually knowing the correct answer
to the question is 0.6.

The final components of the formula are the importance
of the question and the constant value κ. In this case, the
answer to the question is fairly important, but it is definitely
possible for the system to proceed without the user’s help.
Suppose that the importance of this question has been set at
40, and suppose that κ has been learned to be 0.4 Then,

Value of question
= κ × PUK × Importance × Uncertainty
= 0.4 × 0.6 × 40 × 1
= 9.6

Table 5 shows the same variations on the path-choosing
example that were included in Table 4. Costs are computed
in exactly the same way as before and so the cost values are
simply copied from the earlier table. However, the benefits
are now computed by using the above formula for the value
of asking the question, rather than by considering the ex-
pected utilities of the course of action that would be taken
if the system did or did not interact. If the two tables are
compared, it can be seen that the decisions made by the two
agents are identical. However, the agent described in this
section accomplishes this without expensive reasoning about
future sequences of events.

PUK Prob. t b Info. Ben. Costs Ask?
P1 cont.

clear
0.6 0.5 10 10 1 9.6 5 Yes
0.2 0.5 10 10 1 3.2 5 No
0.6 0.9 10 10 0.47 4.5 5 No
0.6 0.1 10 10 0.47 4.5 5 No
1.0 0.9 10 10 0.47 7.5 5 Yes
0.6 0.5 50 10 1 12 13 No
0.6 0.5 10 40 1 12 14 No

Table 5: Variations on path-choosing example revisited

Discussion
When to initiate interaction between autonomous agents and
their human users is an important topic of research. In this
paper, we have proposed a design strategy that operates, in-
dependent of the domain of application of the system. The
proposal, to model and compare the relative benefits and
costs of any possible interaction, is enhanced with details
of specific factors that are especially useful to include, as
part of the modeling, such as: the probability that the human

5See (Russell & Norvig 1995), for example, for the definition
of information content.

knows, the willingness of the human to interact, the criti-
cality of the underlying task and the criticality of the pro-
cessing time. In contrast with approaches such as (Scerri,
Pynadath, & Tambe 2001) that focus on how best to use
an MDP approach, we discuss other models of reasoning
that may be applicable, depending on the domain of appli-
cation. Through this research, we have emphasized the need
to reason about the specific humans who are directing the
processing of the agents and their needs and limitations, as
well as specific information about the task at hand and about
the dialogue that will be generated, as interactions continue
to occur. As such, we provide a principled framework for
making these important decisions about interaction.

We view the agents’ decision to interact as a way of re-
linquishing autonomy to the human, allowing the human to
set the direction of the problem solving. This perspective
on adjustable autonomy is discussed further in (Cohen &
Fleming 2003), and contrasts with the approach discussed
in (Brainov & Hexmoor 2003) where an agent is considered
autonomous if it is beyond the control and power of another
agent. In our case, the agent is sufficiently autonomous in or-
der to give up its control to the human. (Hexmoor, Falcone,
& Castelfranchi 2003) includes a more detailed discussion
on the concept of agent autonomy.
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