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Abstract

Formal results in grammatical inference clearly have some
relevance to first language acquisition. Initial formalisations
of the problem (Gold 1967) are however inapplicable to this
particular situation. In this paper we construct an appropri-
ate formalisation of the problem using a modern vocabulary
drawn from statistical learning theory and grammatical infer-
ence and looking in detail at the relevant empirical facts. We
claim that a variant of the Probably Approximately Correct
(PAC) learning framework (Valiant 1984) with positive sam-
ples only, modified so it is not completely distribution free is
the appropriate choice. Some negative results derived from
cryptographic problems (Kearnset al. 1994) appear to apply
in this situation but the existence of algorithms with prov-
ably good performance (Ron, Singer, & Tishby 1995) and
subsequent work, shows how these negative results are not as
strong as they initially appear, and that recent algorithms for
learning regular languages partially satisfy our criteria. We
conclude by speculating about the extension of these results
beyond regular languages.

Introduction
For some years, the relevance of formal results in grammat-
ical inference to the empirical question of first language ac-
quisition by infant children has been recognised (Wexler &
Culicover 1980). Unfortunately, for many researchers, with
a few notable exceptions (Abe 1988), this begins and ends
with Gold’s famous negative results in the identification in
the limit paradigm. This paradigm, though still widely used
in the grammatical inference community, is clearly of lim-
ited relevance to the issue at hand, since it requires the model
to be able to exactly identify the target language even when
an adversary can pick arbitrarily misleading sequences of
examples to provide. Moreover, the paradigm as stated has
no bounds on the amount of data or computation required for
the learner. In spite of the inapplicability of this particular
paradigm, it is possible to construct, as we shall see, quite
strong arguments that bear directly on this problem.

Grammatical inference is the study of machine learning
of formal languages. It has a vast formal vocabulary and
has been applied to a wide selection of different problems,
where the “languages” under study can be (representations
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of) parts of natural languages, sequences of nucleotides,
moves of a robot, or some other sequence data. For any con-
clusions that we draw from formal discussions to have any
applicability to the real world, we must be sure to select,
or construct, from the rich set of formal devices available
an appropriate formalisation. Even then, we should be very
cautious about making inferences about how the infant child
must or cannot learn language: subsequent developments in
GI might allow a more nuanced description in which these
conclusions are not valid. The situation is complicated by
the fact that the field of grammtical inference, much like the
wider field of machine learning in general, is in a state of
rapid change.

In this paper we hope to address this problem by justify-
ing the selection of the appropriate learning framework start-
ing by looking at the actual situation the child is in, rather
than from ana priori decision about the right framework.
We will not attempt a survey of grammatical inference tech-
niques; nor shall we provide proofs of the theorems we use
here. Though these arguments have often been used in sup-
port of nativist theories of language acquisition – i.e. theo-
ries that posit the existence of large amounts of detailed lan-
guage specific innate knowledge that the child is provided
with through some genetically specified language organ –
we are not concerned with these debates here. In fact, as we
shall see below, some of these arguments apply as strongly
to principle and parameter based theories (Chomsky 1986)
as to empiricist models. These arguments are more pertinent
to questions about the autonomy and modularity of language
learning: the question whether learning of some level of lin-
guistic knowledge – morphology or syntax, for example –
can take place in isolation from other forms of learning –
such as word meaning.

Positive results can help us to understand how humans
might learn languages by outlining the class of algorithms
thatmightbe used by humans, considered as computational
systems at a suitable abstract level. Conversely, negative re-
sults might be helpful if they could demonstrate that no al-
gorithms of a certain class could perform the task – in this
case we could know that the human child learns his language
in some other way.

On a terminological note we should mention the phrase
“The argument from the poverty of the stimulus”. This
now classic argument holds that the stimulus available to the



child is too poor to allow learning to proceed. There are two
versions of the argument as (Cowie 1999) argues convinc-
ingly. The first sort can be calleda posterioriarguments.
These rely on particular contingent facts about the linguistic
experience of the child – in particular the quantity of data,
and the frequency of particular constructions therein. We
shall not be discussing these arguments here; the reader is
referred to the vigorous debate in (Pullum & Scholz 2002).
We focus here on the second class of argument, a morea pri-
ori and purely theoretical argument, that depends on mathe-
matical results from learnability theory for its force.

We shall proceed as follows: after briefly describing FLA,
we describe the various elements of a model of learning, or
framework. We then make a series of decisions based on
the empirical facts about FLA, to construct an appropriate
model or models, avoiding unnecessary idealisation wher-
ever possible. We proceed to some strong negative results,
well-known in the GI community that bear on the questions
at hand. The most powerful of these (Kearnset al. 1994)
appears to apply quite directly to our chosen model. We
then discuss an interesting algorithm (Ron, Singer, & Tishby
1995) which shows that this can be circumvented, at least
for a subclass of regular languages. Finally, after discussing
the possibilities for extending this result to all regular lan-
guages, and beyond, we conclude with a discussion of the
implications of the results presented.

First Language Acquisition
Let us first examine the phenomenon we are concerned with:
first language acquisition. In the space of a few years, chil-
dren almost invariably acquire, in the absence of explicit in-
struction, one or more of the languages that they are exposed
to. A multitude of subsidiary debates have sprung up around
this central issue covering questions about critical periods
– the ages at which this can take place, the exact nature of
the evidence available to the child, and the various phases of
linguistic use through which the infant child passes. In the
opinion of many researchers, explaining this ability is one of
the most important challenges facing linguists and cognitive
scientists today.

A difficulty for us in this paper is that many of the ide-
alisations made in the study of this field are in fact demon-
strably false. Classical assumptions, such as the existence of
uniform communities of language users, are well-motivated
in the study of the “steady state” of a system, but less so
when studying acquisition and change. There is a regret-
table tendency to slip from viewing these idealisations cor-
rectly – as counter-factual idealizations – to viewing them
as empirical facts that need to be explained. Thus, when
looking for an appropriate formulation of the problem, we
should recall for example the fact that different children do
not converge to exactly the same knowledge of language as
is sometimes claimed, nor do all of them acquire a language
competently at all , since there is a small proportion of chil-
dren who though apparently neurologically normal fail to
acquire language. In the context of our discussion later on,
these observations lead us to accept slightly less stringent
criteria where we allow a small probability of failure and do
not demand perfect equality of hypothesis and target.

Grammatical Inference

The general field of machine learning has a specialised sub-
field that deals with the learning of formal languages. This
field, Grammatical Inference (GI), is characterised above all
by an interest in formal results, both in terms of formal char-
acterisations of the target languages, and in terms of formal
proofs either that particular algorithms can learn according
to particular definitions, or that sets of language cannot be
learnt. In spite of its theoretical bent, GI algorithms have
also been applied with some success. Natural language,
however is not the only source of real-world applications
for GI. Other domains include biological sequence data, ar-
tificial languages, such as discovering XML schemas, or se-
quences of moves of a robot. The field is also driven by
technical motives and the intrinsic elegance and interest of
the mathematical ideas employed. In summary it is not just
about language, and accordingly it has developed a rich vo-
cabulary to deal with the wide range of its subject matter.

In particular, researchers are often concerned with formal
results – that is we want algorithms where we canprovethat
they will perform in a certain way. Often, we may be able
to empirically establish that a particular algorithm performs
well, in the sense of reliably producing an accurate model,
while we may be unable to prove formally that the algorithm
will always perform in this way. This can be for a number
of reasons: the mathematics required in the derivation of
the bounds on the errors may be difficult or obscure, or the
algorithm may behave strangely when dealing with sets of
data which are ill-behaved in some way.

The basic framework can be considered as a game played
between two players. One player, the teacher, provides in-
formation to another, the learner, and from that information
the learner must identify the underlying language. We can
break down this situation further into a number of elements.
We assume that the languages to be learned are drawn in
some way from a possibly infinite class of languages,L,
which is a set of formal mathematical objects. The teacher
selects one of these languages, which we call thetarget, and
then gives the learner a certain amount of information of
various types about the target. After a while, the learner
then returns its guess, the hypothesis, which in general will
be a language drawn from the same classL. Ideally the
learner has been able to deduce or induce or abduce some-
thing about the target from the information we have given
it, and in this case the hypothesis it returns will be identi-
cal to, or close in some technical sense, to the target. If the
learner can conistently do this, under whatever constraints
we choose, then we say it can learn that class of languages.
To turn this vague description into something more concrete
requires us to specify a number of things.

• What sort of mathematical object should we use to repre-
sent a language?

• What is the target class of languages?

• What information is the learner given?

• What computational constraints does the learner operate
under?



• How close must the target be to the hypothesis, and how
do we measure it?

This paper addresses the extent to which negative results
in GI, could be relevant to this real world situation. As al-
ways, when negative results from theory are being applied,
a certain amount of caution is appropriate in examining the
underlying assumptions of the theory and the extent to which
these are applicable. As we shall see, in our opinion, none of
the current negative results, though powerful, are applicable
to the empirical situation. We shall accordingly, at various
points, make strong pessimistic assumptions about the learn-
ing environment of the child, and show that even under these
unrealistically stringent stipulations, the negative results are
still inapplicable. This will make the conclusions we come
to a little sharper. Conversely, if we wanted to show that the
negative results did apply, to be convincing we would have
to make rather optimistic assumptions about the learning en-
vironment.

Applying GI to FLA
We now have the delicate task of selecting, or rather con-
structing, a formal model by identifying the various com-
ponents we have identified above. We want to choose the
model that is the best representation of the learning task or
tasks that the infant child must perform. We consider that
some of the empirical questions do not yet have clear an-
swers. In those cases, we shall make the choice that makes
the learning task more difficult. In other cases, we may
not have a clear idea of how to formalise some information
source. We shall start by making a significant idealisation:
we consider language acquisition as being a single task. Nat-
ural languages as traditionally describe have different levels.
At the very least we have morphology and syntax; one might
also consider inter-sentential or discourse as an additional
level. We conflate all of these into a single task: learning
a formal language; in the discussion below, for the sake of
concreteness and clarity, we shall talk in terms of learning
syntax.

The Language
The first question we must answer concerns the language
itself. A formal language is normally defined as follows.
Given a finite alphabetΣ, we define the set of all strings (the
free monoid) overΣ asΣ∗. We want to learn a language
L ⊂ Σ∗. The alphabetΣ could be a set of phonemes, or
characters, or a set of words, or a set of lexical categories
(part of speech tags). The language could be the set of well-
formed sentences, or the set of words that obey the phono-
tactics of the language, and so on. We reduce all of the dif-
ferent learning tasks in language to a single abstract task –
identifying a possibly infinite set of strings. This is overly
simplistic since transductions, i.e. mappings from one string
to another, are probably also necessary. We are using here
a standard definition of a language where every string is un-
ambiguously either in or not in the language.. This may ap-
pear unrealistic – if the formal language is meant to repre-
sent the set of grammatical sentences, there are well-known
methodological problems with deciding where exactly to

draw the line between grammatical and ungrammatical sen-
tences. An alternative might be to consider acceptability
rather than grammaticality as the defining criterion for inclu-
sion in the set. Moreover, there is a certain amount of noise
in the input – There are other possibilities. We could for
example use a fuzzy set – i.e. a function fromΣ∗ → [0, 1]
where each string has a degree of membership between 0 and
1. This would seem to create more problems than it solves.
A more appealing option is to learn distributions, again func-
tionsf from Σ∗ → [0, 1] but where

∑
s∈L f(s) = 1. This

is of course the classic problem of language modelling, and
is compelling for two reasons. First, it is empirically well
grounded – the probability of a string is related to its fre-
quency of occurrence, and secondly, we can deduce from
the speech recognition capability of humans that they must
have some similar capability.

Both possibilities – crisp languages, and distributions –
are reasonable. the choice depends on what one considers
the key phenomena to be explained are – grammaticality
judgments by native speakers, or natural use and compre-
hension of the language. We favour the latter, and accord-
ingly think that learning distributions is a more accurate and
more difficult choice.

The class of languages

A common confusion in some discussions of this point is
between languages and classes of languages. Learnability is
a property ofclassesof languages. If there is only one lan-
guage in the class of languages to be learned then the learner
can just guess that language and learn it. A class with two
languages is again trivially learnable if you have an efficient
algorithm for testing membership. It is only when the set
of languages is exponentially large or infinite, that the prob-
lem becomes non-trivial, from a theoretical point of view.
The class of languages we need is a class of languages that
includes all attested human languages and additionally all
“possible” human languages. Natural languages are thought
to fall into the class of mildly context-sensitive languages,
(Vijay-Shanker & Weir 1994), so clearly this class is large
enough. It is, however, not necessary that our class be this
large. Indeed it is essential for learnability that it is not.
As we shall see below, even the class of regular languages
contains some subclasses that are computationally hard to
learn. Indeed, we claim it is reasonable to define our class
so it doesnot contain languages that are clearly not possi-
ble human languages. Figure 1 shows diagramatically the
relationships between the various classes we discuss in this
paper.

Information sources

Next we must specify the information that our learning algo-
rithm has access to. Clearly the primary source of data is the
primary linguistic data(PLD), namely the utterances that
occur in the child’s environment. These will consist of both
child-directed speech and adult-to-adult speech. These are
generally acceptable sentences that is to say sentences that
are in the language to be learned. These are calledpositive
samples. One of the most long-running debates in this field



RG

CFG

MCSG

NL

Swiss GermanEnglish
Hard

Figure 1: Diagram showing possible classes of languages.
RG is the class of regular languages, CFG is context free,
MSCG is the class of mildly context sensitive languages that
include linear indexed grammars. The dashed ellipse shows
a putative class of possible natural languages, that includes
all attested natural languages, but excludes some computa-
tionally difficult languages shown in the dotted ellipse.

is over whether the child has access to negative data – un-
acceptable sentences that are marked in some way as such.
The consensus (Marcus 1993) appears to be that they do not.
In middle-class Western families, children are provided with
some sort of feedback about the well-formedness of their ut-
terances, but this is unreliable and erratic, not a universal
of global child-raising. Furthermore this appears to have no
effect on the child. Children do also get indirect pragmatic
feedback if their utterances are incomprehensible. In our
opinion, both of these would be better modelled by what is
called a membership query: the algorithm may generate a
string and be informed whether that string is in the language
or not. However, we feel that this is too erratic to be con-
sidered an essential part of the process. Another question
is whether the input data is presented as a flat string or an-
notated with some sort of structural evidence, which might
be derived from prosodic or semantic information. Unfortu-
nately there is little agreement on what the constituent struc-
ture should be – indeed many linguistic theories do not have
a level of constituent structure at all, but just dependency
structure.

Semantic information is also claimed as an important
source. The hypothesis is that children can use lexical se-
mantics, coupled with rich sources of real-world knowlege
to infer the meaning of utterances from the situational con-
text. That would be an extremely powerful piece of infor-
mation, but it is clearly absurd to claim that the meaning of
an utterance is uniquely specified by the situational context.
If true, there would be no need for communication or in-
formation transfer at all. Of course the context puts some
constraints on the sentences that will be uttered, but it is not
clear how to incorporate this fact without being far too gen-
erous. In summary it appears that only positive evidence can
be unequivocally relied upon though this may seem a harsh
and unrealistic environment.

Presentation
We have now decided that the only evidence available to the
learner will be unadorned positive samples drawn from the
target language. There are various possibilities for how the
samples are selected. The choice that is most favourable for
the learner is where they are slected by a helpful teacher to
make the learning process as easy as possible (Goldman &
Mathias 1996). While it is certainly true that carers speak to
small children in sentences of simple structure (Motherese),
this is not true for all of the data that the child has access
to, nor is it universally valid. Moreover, there are serious
technical problems with formalising this, namely what is
called ’collusion’ where the teacher provides examples that
encode the grammar itself, thus trivialising the learning pro-
cess. Though attempts have been made to limit this problem,
they are not yet completely satisfactory. The next alterna-
tive is that the examples are selected randomly from some
fixed distribution. This appears to us to be the appropriate
choice, subject to some limitations on the distributions that
we discuss below. The final option, the most difficult for the
learner, is where the sequence of samples can be selected by
an intelligent adversary, in an attempt to make the learner
fail, subject only to the weak requirement that each string
in the language appears at least once. This is the approach
taken in the identification in the limit paradigm (Gold 1967),
and is clearly too stringent. The remaining question then re-
gards the distribution from which the samples are drawn:
whether the learner has to be able to learn for every possible
distribution, or only for distributions from a particular class,
or only for one particular distribution.

Resources
Beyond the requirement of computability we will wish to
place additional limitations on the computational resources
that the learner can use. Since children learn the language
in a limited period of time, which limits both the amount
of data they have access to and the amount of computation
they can use, it seems appropriate to disallow algorithms
that use unbounded or very large amounts of data or time.
As normal, we shall formalise this by putting polynomial
bounds on thesample complexityandcomputational com-
plexity. Since the individual samples are of varying length,
we need to allow the computational complexity to depend
on the total length of the sample. A key question is what the
parameters of the sample complexity polynomial should be.
We shall discuss this further below.

Convergence Criteria
Next we address the issue of reliability: the extent to which
all children acquire language. First, variability in achieve-
ment of particular linguistic milestones is high. There are
numerous causes including deafness, mental retardation,
cerebral palsy, specific language impairment and autism.
Generally, autistic children appear neurologically and phys-
ically normal; but about half may never speak. Autism, on
some accounts, has an incidence of about 0.2% Therefore
we can require learning to happen with arbitrarily high prob-
ability, but requiring it to happen with probability one is un-
reasonable. A related question concerns convergence: the



extent to which children exposed to a linguistic environment
end up with the same language as others. Clearly they are
very close since otherwise communication could not hap-
pen, but there is ample evidence from studies of variation
(Labov 1975), that there are non-trivial differences between
adults, who have grown up with near-identical linguistic ex-
periences, about the interpretation and syntactic acceptabil-
ity of simple sentences, quite apart from the wide purely lex-
ical variation that is easily detected. An example in English
is “Each of the boys didn’t come”.

Moreover, language changerequiressome children to end
up with slightly different grammars from the older genera-
tion. At the very most, we should require that the hypothesis
should be close to the target. The function we use to mea-
sure the ’distance’ between hypothesis and target depends
on whether we are learnng crisp languages or distributions.
If we are learning distributions then the obvious choice is
the Kullback-Leibler divergence – a very strict measure. For
crisp languages, the probability of the symmetric difference
with respect to some distribution is natural.

PAC-learning
These considerations lead us to some variant of the Proba-
bly Approximately Correct (PAC) model of learning (Valiant
1984). We require the algorithm to produce with arbitrarily
high probability a good hypothesis. We formalise this by
saying that for anyδ > 0 it must produce a good hypoth-
esis with probability more than1 − δ. Next we require a
good hypothesis to be arbitrarily close to the target, so we
have a precisionε and we say that for anyε > 0, the hy-
pothesis must be less thanε away from the target. We al-
low the amount of data it can use to increase as the confi-
dence and precision get smaller. We define PAC-learning
in the following way: given a finite alphabetΣ, and a class
of languagesL over Σ, an algorithm PAC-learns the class
L, if there is a polynomialq, such that for every confidence
δ > 0 and precisionε > 0, for every distributionD overΣ∗
, for every languageL in L, whenever the number of sam-
ples exceedsq(1/ε, 1/δ, |Σ|, |L|), the algorithm must pro-
duce a hypothesisH such that with probability greater than
1 − δ, PrD(H∆L > ε). Here we useA∆B to mean the
symmetric difference between two sets. The polynomialq
is called the sample complexity polynomial. We also limit
the amount of computation to some polynomial in the total
length of the data it has seen. Note first of all that this is a
worst case bound – we are not requiring merely that on aver-
age it comes close. Additionally this model is what is called
’distribution-free’. This means that the algorithm must work
for every combination of distribution and language. This is
a very stringent requirement, only mitigated by the fact that
the error is calculated with respect to the same distribution
that the samples are drawn from. Thus, if there is a subset of
Σ∗ with low aggregate probability underD, the algorithm
will not get many samples from this region but will not be
penalised very much for errors in that region. From our point
of view, there are two problems with this framework: first,
we only want to draw positive samples, but the distributions
are over all strings inΣ∗, and include some that give a zero
probability to all strings in the language concerned. Sec-

ondly, this is too pessimistic because the distribution has no
relation to the language: intuitively it’s reasonable to ex-
pect the distribution to be derived in some way from the
language, or the structure of a grammar generating the lan-
guage.

One alternative that has been suggested is the PAC learn-
ing with simple distributions model introduced by (Denis
2001). This is based on ideas from complexity theory where
the samples are drawn according to a universal distribution
defined by the conditional Kolmogorov complexity. While
mathematically correct this is inappropriate as a model of
FLA for a number of reasons. First, learnability is proven
only on a single very unusual distribution, and relies on par-
ticular properties of this distribution, and secondly there are
some very large constants in the sample complexity polyno-
mial.

The solution we favour is to define some natural class
of distributions based on a grammar or automaton gener-
ating the language. Given a class of languages defined by
some generative device, there is normally a natural stochas-
tic variant of the device which defines a distribution over
that language. Thus regular languages can be defined by a
finite-state automaton, and these can be naturally extended
to Probabilistic finite state automaton. Similarly context free
languages are normally defined by context-free grammmars
which can be extended again to to Probabilistic or stochas-
tic CFG. We therefore propose a slight modification of the
PAC-framework. For every class of languagesL, defined by
some formal device define a class of distributions defined by
a stochastic variant of that device.D. Then for each lan-
guageL, we select the set of distributions whose support is
equal to the language:D+

L = {D ∈ D : ∀s ∈ Σ∗s ∈
L ⇔ PD(s) > 0}. Samples are drawn from one of these
distributions.

There are two technical problems here: first, this doesn’t
penalise over-generalisation. Since the distribution is over
positive examples, negative examples have zero weight, so
we need some penalty function over negative examples or
alternatively require the hypothesis to be a subset of the tar-
get. Secondly, this definition is too vague. The exact way
in which you extend the “crisp” language to a stochastic one
can have serious consequences. When dealing with regu-
lar languages, for example, though the class of languages
defined by deterministic automata is the same as that de-
fined by non-deterministic languages, the same is not true
for their stochastic variants (Espositoet al. 2002). Addi-
tionally, one can have exponential blow-ups in the number of
states when determinising automata. Similarly, with CFGs,
(Abney, McAllester, & Pereira 1999) showed that convert-
ing between two parametrisations of stochastic Context Free
languages are equivalent but that there are blow-ups in both
directions. We do not have a completely satisfactory solu-
tion to this problem at the moment; an alternative is to con-
sider learning the distributions rather than the languages.

In the case of learning distributions, we have the same
framework, but the samples are drawn according to the dis-
tribution being learnedT , and we require that the hypothe-
sisH has small divergence from the target:D(T ||H) < ε.
Since the divergence is infinite if the hypothesis gives prob-



ability zero to a string in the target, this will have the conse-
quence that the target must assign a non-zero probability to
every string.

Negative Results
Now that we have a fairly clear idea of various ways of
formalising the situation we can consider the extent to
which formal result apply. First we consider negative re-
sults, which in Machine Learning come in two types. First,
information-theoretic bounds on sample complexity, derived
from the Vapnik-Chervonenkis (VC) dimension of the space
of languages, a measure of the complexity of the set of hy-
potheses. If we add a parameter to the sample complexity
polynomial that represents the complexity of the concept to
be learned then this will remove these problems. This can
be the size of a representation of the target which will be a
polynomial in the number of states, or simply the number of
non-terminals or states. This is very standard in most fields
of machine learning.

The second problem relates not to the amount of informa-
tion but to the computation involved. Results derived from
cryptographic limitations on computational complexity, can
be proved based on widely held and well supported assump-
tions that certain hard cryptographic problems are insolu-
ble. In what follows we assume that there are no efficient
algorithms for common cryptographic problems such as fac-
toring Blum integers, inverting RSA function, recognizing
quadratic residues or learning noisy parity functions.

There may be algorithms that will learn with reasonable
amounts of data but that require unfeasibly large amounts of
computation to find. There are a number of powerful nega-
tive results on learning in the purely distribution-free situa-
tion we considered and rejected above. (Kearns & Valiant
1989) showed that acyclic deterministic automata are not
learnable even with positive and negative examples. Simi-
larly, (Abe & Warmuth 1992) showed a slightly weaker rep-
resentation dependent result on learning with a large alpha-
bet for non-deterministic automata, by showing that there
are strings such that maximising the likelihood of the string
is NP-hard. Again this does not strictly apply to the partially
distribution free situation we have chosen.

However there is one very strong result that appears to ap-
ply. A straightforward consequence of (Kearnset al. 1994)
shows that Acyclic Deterministic Probabilistic FSA over a
two letter alphabet cannot be learned under another crypto-
graphic assumption (the noisy parity assumption). Therefore
any class of languages that includes this comparatively weak
family will not be learnable in out framework.

But this rests upon the assumption that the class of possi-
ble human languages must include some cryptographically
hard functions. It appears that our formal apparatus does
not distinguish between these cryptographic functions which
hav been consciously designed to be hard to learn, and natu-
ral languages which presumably have evolved to be easy to
learn since there is no evolutionary pressure to make them
hard to decrypt – no intelligent predators eavesdropping for
example. Clearly this is a flaw in our analysis: we need to
find some more nuanced description for the class of possible
human languages that excludes these hard languages.

Positive results
There is a positive result that shows a way forward. A
PDFA isµ-distinguishable the distributions generated from
any two states differ by at leastµ in theL∞-norm, i.e. there
is a string with a difference in probability of at leastµ.
(Ron, Singer, & Tishby 1995) showed thatµ-distinguishable
acyclic PDFAs can be PAC-learned using the KLD as error
function in time polynomial inn, 1/ε, 1/δ, 1/µ, |Σ|. They
use a variant of a standard state-merging algorithm. Since
these are acyclic the languages they define are always fi-
nite. This additional criterion of distinguishability suffices to
guarantee learnability. This work can be extended to cyclic
automata (Clark & Thollard 2003), and thus the class of all
regular languages, with the addition of a further parameter
which bounds the expected length of a string generated from
any state. The use of distinguishability seems innocuous; in
syntactic terms it is a consequence of the plausible condi-
tion that for any pair of distinct non-terminals there is some
fairly likely string generated by one and not the other. Sim-
ilarly strings of symbols in natural language tend to have
limited length. An alternate way of formalising this is to
define a class of distinguishable automata, where the dis-
tinguishability of the automata is lower bounded by an in-
verse polynomial in the number of states. This is formally
equivalent, but avoids adding terms to the sample complex-
ity polynomial. In summary this would be a valid solution if
all human languages actually lay within the class of regular
languages. We have implemented this algorithm and it is a
practical algorithm, Note also the general properties of this
kind of algorithm: provably learning an infinite class of lan-
guages with infinite support using only polynomial amounts
of data and computation.

Discussion
This topic has been discussed before – a recent survey is
(Nowak, Komarova, & Niyogi 2002). However, the suitabil-
ity of a Gold paradigm seems to have been accepted uncrit-
ically in most previous discussions when in our view it is
clearly inappropriate. As we have seen, no current negative
results apply with the exception of (Kearnset al. 1994),
and there are some promising positive results for regular
languages. Extension to context free grammars or beyond
requires or larger requires much further work. There are
at least three areas of difficulty. First, determinism is an
important part of the algorithms we have discussed here.
Completely non-deterministic grammars are very hard to
learn. There is some hope that mildly non-deterministic
grammars might be learnable (Espositoet al. 2002). Sec-
ondly, some of the decision problems for CFGs that one
might want to use in an algorithm, are undecidable. Fi-
nally, simple CFGs for natural languages have exponentially
large numbers of non-terminals (Gazdaret al. 1985). On a
more positive note, empirical work is promising in a num-
ber of specific fields, (Klein & Manning 2002; Clark 2002;
2003), though these algorithms have no formal guarantees
of convergence to a correct grammar.

It is worth pointing out that the negative result of (Kearns
et al. 1994) applies with equal force to Principles and Pa-



rameters based models of language acquisition. The specific
class of noisy parity functions they prove are unlearnable,
are parametrised by a number of binary parameters in a way
very reminiscent of Chomskyan theories. The mere fact that
there are a finite number of parameters does not suffice to
guarantee learnability, if the resulting class of languages is
exponentially large.

In summary, we have proposed a formal analysis of first
language acquisition. We have discussed how even the
strongest negative result currently known, does not rule out
a purely autonomous learning system, and that on the con-
trary there are encouraging positive results for regular lan-
guages. Learnability can be guaranteed by rather banal sta-
tistical properties of the input distributions; it is not neces-
sary to hypothesise highly structured classes of possible lan-
guages.
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