
Towards Interactive Composition of Semantic Web Services

Jihie Kim and Yolanda Gil
Information Sciences Institute

University of Southern California
4676 Admiralty Way

Marina del Rey, CA 90292, U.S.A.
jihie@isi.edu, gil@isi.edu

Abstract

We are developing a framework for interactive compo-
sition of services that assists users in sketching their re-
quirements by analyzing the semantic description of the
services. We are applying this framework to compose
end-to-end simulations for earthquake scientists. We
describe the requirements that an interactive framework
poses to the representation of the services, and how the
representations are exploited to support the interaction.
We also describe an analysis tool that helps users create
complete and correct compositions of web services.

Introduction
Composing executable workflows out of smaller compo-
nents is essential in many areas, including large-scale sci-
entific research and business related applications. A new
kind of science is emerging from the integration of models
developed by individual scientists and groups, to result in
end-to-end scientific applications that result from the com-
position of those individual models. Another example is the
composition of web services to create new applications out
from existing software components (such as software mod-
ules or web services) given a customer’s needs.

Web services are an emerging technology to describe and
discover these components. Research in semantic web ser-
vices provides more expressive representations that result in
more powerful techniques for services composition.

This paper argues that:

• complex applications require interactions with users, who
will need to formulate their goals at high levels of abstrac-
tion while the system will work out the details.

• partial workflows containing high-level descriptions of
component services are needed to help users navigate the
space of possible combinations of services.

• constraints shared by abstract types of components need
to be checked at every step, since they result in commit-
ments made by users as they narrow down the space of
possible choices.

Most approaches to web service composition address
automatically composing the services(Mcdermott 2002;

Copyright c© 2004, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

Bursteinet al. 2000; Paolucciet al. 2002; Sycara, Lu, &
Klusch 1999). However, in many contexts users will want to
drive the process, influencing the selection of components
and their configuration. In addition, users may only have
high-level or partial/incomplete description of the desired
outcome or the initial state, so it may be hard to directly
apply automatic approaches that require explicit goal repre-
sentations. Business agreement and past experiences of how
the components were used may also affect the development
of the composition.

The goal of our work is to develop interactive tools for
composing web services where users sketch a composition
of services and system assists the users by providing intelli-
gent suggestions.

Interactive approaches need to address additional chal-
lenges in composing services. First of all, users may make
various types of mistakes and the system needs to help fix
them. The user may forget to specify links between the steps
or specify wrong links. There may be some missing steps or
unnecessary steps. Also, user’s input is often incomplete
(such as incomplete or abstract goal descriptions) and may
even be inconsistent with existing descriptions of the com-
ponents.

We found such issues arising in constructingcomputa-
tion pathwaysin earthquake science where engineers inter-
actively compose existing or web services in order to answer
their queries. Even with a small number of services that need
to be put together to generate answers, users would benefit
from the assistance of intelligent tools that help them specify
complete and correct pathways.

In order to help users in this context, we have developed
a framework for guiding users in sketching a composition
of services by exploiting a semantic description of the ser-
vices. The framework is inspired by our earlier work in help-
ing users construct process models from pre-defined compo-
nents of objects and events (Kim & Gil 2001). In our pre-
vious work, we have built a tool that performs verification
and validation of user entered process models by exploiting
domain ontologies and event ontologies. In this work, we
first take existing service descriptions and extend them with
domain ontologies and task ontologies that address various
task types in the domain. Our analysis tool then uses these
ontologies in examining a user’s solution (i.e., composition
of services) and generating suggestions about how to pro-



Figure 1: An example computational pathway in earthquake
science domain.

ceed.
The tool we built is called CAT (Composition Analysis

Tool). CAT’s analysis is driven by a set of desirable prop-
erties of composed services including (1) all the expected
results are achieved, (2) all the links are consistent, (3) all
the input data needed are provided, and (4) all the opera-
tions are grounded (there are actual operations that can be
executed). While performing these checks, CAT generates
specific suggestions on how to fix the errors based on the
type of the errors and the situation at hand. We show how
these checks can effectively help engineers build computa-
tional pathways in earthquake science. We also show how
the approach can be used in other domains when appropri-
ate domain ontologies and task ontologies are provided. As
ontologies become richer, the tool can provide more direct
and focused suggestions.

This paper begins by introducing a problem that moti-
vated us to build our framework. Then we describe how ex-
isting service definitions can be extended with domain and
task ontologies. Next we present the current implementation
of CAT including the kinds of checks made and the sug-
gestions provided, and then show how the system works in
the context of constructing computational pathway in earth-
quake science and travel planning. Finally we discuss re-
maining issues and future plans.

Motivation: Computational Pathway
Elicitation for Earthquake Science

One of the key problems often addressed in earthquake sci-
ence is to analyze the potential level of hazard at a given site.
For example, engineers may want to determine the proba-
bility that some measure of earthquake shaking will be ex-
ceeded during a specified time period. Depending on the
kind of structure, the engineer will be interested in looking
at a particular Intensity Measure Type (IMT): PGA (Peak
Ground Acceleration), PGV (Peak Ground Velocity), or SA
(Spectral Acceleration). The engineer is concerned with the
IMT exceeding an intensity measure level. There are sim-
ulation models available that provide an estimate of hazard
at that site for that structure as a probability that the inten-
sity measure level will be exceeded in a certain time period.
They are called Intensity Measure Relationships (IMRs).
An IMR can analyze the impact on that site for a given
earthquake forecast, so the IMRs should be run consider-
ing Earthquake Forecast Models (EFMs) that suggest entire

sequences of earthquake forecasts around the area where the
site is located. Users can choose different IMRs depend-
ing on the situation at hand because each IMR is designed to
take into account specific types of earth shaking phenomena.
In addition, different constraints that are associated with the
IMRs have to be taken into account when they are used.

To determine the hazard level given a site, we may need to
put together various components, as shown in Figure 1, con-
sidering the overall task given and the constraints associated
with each component. We call it acomputational pathway.
A computational pathway consists of a set of operations and
a set of links that connect the operations based on their input
and output parameter constraints.

In constructing a computational pathway, engineers may
use a variety of strategies, including 1) top-down selection of
components, starting from abstract types of models and then
selecting specific ones; 2) result-based selection of com-
ponents working from desired data to select models that
can generate those results; 3) situation-based selection of
components, working from the initial data available to se-
lect components whose constraints are consistent with those
data.

Formulating complete and consistent pathways in this
process is very hard for end users who don’t have computer
science background (Kim & Gil 2001; 2000). For example,
user terms may be different from the description language
that define the services, users may not know how to describe
their problems, and they may make many different mistakes.

In order to build the pathway shown in Figure 1, users
need a proactive help from a system that understands how
the pathway is being built and generates appropriate sugges-
tions.

Approach
Our approach complements simple WSDL (Web Service
Description Language) models (Christensenet al. 2003)
with both tasks and domain ontologies as follows:

• We cast each simulation model as a web service and de-
scribe its input and output in WSDL. A simulation model
can be invoked in several ways, and each of them is
mapped to different operations for its service.

• We use web services for message transport, but not for
reasoning about the service. That is, the WSDL descrip-
tions have “string” in the types assigned to message pa-
rameters.

• We use off-the-shelf domain ontologies to specify data
types in the WSDL descriptions. That is, parameters in
WSDL messages are mapped to terms in the domain on-
tology.

• We use a task ontology to describe abstract types of op-
erations and services. We follow the approach in (Gil
& Blythe 2000) to represent task types and their argu-
ments. This representation is based on case frames (Fill-
more 1968), where verbs are qualified by cases that reflect
their linguistic usage.

We first show how existing service descriptions can be
extended with domain ontologies. Then we present CAT’s



analysis functions that are built based on this extended rep-
resentation.

Representing services using domain ontologies
In order to support the kinds of interactions described above,
CAT needs a semantic description of the services and their
constraints on input and output parameters.

<!-- WSDL description of the Field-2000 Web APIs.-->

<definitions name="urn:Field_2000Query"

targetNamespace="urn:Field_2000Query"

xmlns:typens="urn:Field_2000Query"

...

xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"

xmlns="http://schemas.xmlsoap.org/wsdl/">

<!-- Messages for Field-2000 Web APIs -->

<message name="F2-operation-SA-Median-VS30-Request">

<!-- Generic inputs -->

<part name="model" type="xsd:string"/>

<part name="user" type="xsd:string"/>

<part name="logwsdl" type="xsd:string"/>

<!-- Inputs specific to the model -->

<part name="MOMENT-MAGNITUDE" type="xsd:string"/>

<part name="DISTANCE-JB" type="xsd:string"/>

<part name="FAULT-TYPE-PARAMETER" type="xsd:string"/>

<part name="VS30" type="xsd:string"/>

...

</message>

<message name="F2-operation-SA-Median-VS30-Response">

<part name="return" type="xsd:string"/>

</message>

...

<!-- Port for Field-2000 Web APIs -->

<portType name="Field_2000Port">

<operation name="F2-operation-SA-Median-VS30">

<input message=

"typens:F2-operation-SA-Median-VS30-Request"/>

<output message=

"typens:F2-operation-SA-Median-VS30-Response"/>

</operation>

<operation name="F2-operation-SA-Median-MAGNITUDE">

<input message=

"typens:F2-operation-SA-Median-Magnitude-Request"/>

<output message=

"typens:F2-operation-SA-Median-Magnitude-Response"/>

</operation>

...

</portType>

<!-- Binding for Field-2000 Web APIs -->

<binding name="Field_2000Binding"

type="typens:Field_2000Port"> ...

</binding>

<!-- Endpoint for Field-2000 Web APIs -->

<service name="Field_2000Service">

...

</service>

</definitions>

The above shows a part of WSDL representation of an
earthquake simulation service. In our work with earthquake
scientists, web services have been built for existing software

Figure 2: Task Ontology and Domain Ontology.

components. The service, called “Field2000Service”, is
represented as a set ofoperationsthat take input data needed
to run a simulation and generate output results as numbers.
For example, an operation called F2-operation-SA-Median-
VS30 produces median values of spectral acceleration with
respect to valid VS30 value ranges. There are various other
Field-2000 operations that can be chosen by users depending
on the kinds of queries they have in mind, including the IMT
type (SA or PGA or PGV), the probability function (Me-
dian or Probability of Exceedance or Standard-Deviation),
the independent variable used to render the results (VS30 or
Moment Magnitude or ...), etc. In this representation of a
service, all the input and output data types are simply de-
scribed as strings, so we consider it ’syntactic’ in the sense
that the description itself does not provide enough semantic
information on what each operation needs, what it does and
what it produces, which we believe are essential in support-
ing interactive service composition. Although some of the
existing services use more complex data types, most of the
service descriptions cannot directly support the kinds inter-
actions needed for constructing computational pathways.

Our approach is to take these existing syntax level ser-
vice descriptions and extend them with two types of knowl-
edge: domain term ontology and task ontology. As shown
in Figure 2, service operations can be defined using the do-
main terms defined in a domain ontology. That is, their
input and output data types can be represented using do-
main objects, and their task types can be defined as map-
pings between input data types and output data types. For
example, a task type Compute-Hazard-Level-given-IMR-
Input-Parameters has IMR-Input-Parameters as the input
and Hazard-Level as the output.

The current implementation uses description logic to
represent and reason about these ontologies. For exam-
ple, the above description of Field 2000 can be repre-
sented as a set of instances, where Field-2000-Service rep-
resents a service and F2-operation-SA-Median-VS30 is an
instance representing one of the operations. Each opera-
tion is represented with a task type in the task ontology



and its input and output parameters are described using
the data types defined in the domain ontology. Here F2-
operation-SA-Median-VS30 is an operation that produces
F2-SA-Median-wrt-VS30 given Fault-Type, Basin-Depth,
etc. (Compute-F2-SA-Median-wrt-VS30-given-Fault-Type-
&-Basin-Depth-&-...). As shown in Figure 2, this operation
is a kind of earthquake simulation task (Compute-Hazard-
Level-given-IMR-Input-Parameters).

Checking Computational Pathways with CAT
Given a computational pathway and a user task description
(i.e., a set of initial input and expected results), CAT checks
if (1) all the expected results are produced, (2) all the links
are consistent, (3) all the input data needed are provided, and
(4) all the operations are grounded (there are actual opera-
tions that can be executed). In addition, it generates warn-
ings on (5) unused data and (6) unused operations that don’t
participate in producing expected results. Given any errors
detected, CAT generates a set of fixes that can be potentially
used by the user. The following shows the general algo-
rithms that are used in checking errors and generating sug-
gestions. The italicized parts are supported by queries to the
knowledge base.

• Checking Unachieved Expected Results:

– Detect problem: for each expected result, check if it is linked
to an output of an operation or directly linked to any of the
initial input (i.e., the result is given initially).

– Help user fix problem:
1. find any available data (initial input or output from intro-
duced operations) that issubsumed by the data type of the
desired result, and suggest to add a link
2. find operation types in the task ontology where an output
is subsumed by the desired data typeand all the input are pro-
vided (i.e.,subsumed by either the initial input or some output
from introduced operations), and suggest to add the operation
types.
3. find operation types where an output is subsumed by the
data type of the desired result, and suggest to add the opera-
tion types.

• Checking Missing Data:

– Detect problem: for each operation introduced, for each input
parameter of the operation, find if it is linked to any (either
to the initial input or to some output from introduced opera-
tions).

– Help user fix problem:
1. find any initial input data or output of operations that is
subsumed by the desired data type, and suggest to add a link.
2. find operation types in the task ontology where an output
is subsumed by the desired data typeand all the input are
provided (i.e.,subsumed by either the initial input or some
output from introduced operations), and suggest to add the
operation types.
3. find operation types where an output is subsumed by the
desired data type, and suggest to add the operation types.

• Checking Inconsistent Links:

– Detect problem: for each link between data types,find if the
former one is subsumed by the latter one.

– Help user fix problem:
1. find operation types where an output is subsumed by the

Figure 3: CAT Interface.

latter one and an input subsumes the former one, and suggest
to add the operation types.

• Checking Ungrounded Operation:

– Detect problem: for each operation type introduced in the
pathway, checkif there is a mapping to an actual operation
that can be performed.

– Help user fix problem:
1. find a set of qualifiers that can be used to specialize itand
suggest to replace the operation type with a more special one
base on the qualifiers.
2. find the subconcepts of the task type in the task ontology
and suggest to choose one of them.

• Checking Unused Data:

– Detect problem: for each initial input data type and the out-
put from the introduced operations, check if it is linked to an
operation or an expected result.

– Help user fix problem:
1. find any missing data or unachieved results thatsubsumes
the unused data type, and suggest to add a link.
2. find operation types where an input subsumes the unused
data and some output are subsumed by any of the missing
data or unachieved results, and suggest to add the operation
types.
3. find operation types where an input subsumes the unused
data, and suggest to add the operation types.

• Checking Unused Operation:

– Detect problem: for each operation introduced, check if its
output or any output from its following operations is linked
to an expected result.

– Help user fix problem:
1. suggest to add a link to connect the operation

Whenever CAT detects an error, it sends an error message
and a set of suggestions that can be used to fix the error.
When there are more than one way of computing sugges-
tions, CAT tries them according to the orders given in the
algorithm (e.g., fix 1 then fix 2, ...). CAT also incorporate
some heuristics for ordering errors and providing sugges-
tions as they appear in the interface. More details of the al-
gorithm and its formalism are available in (Kim, Spraragen,
& Gil 2004; Spraragen, Kim, & Gil 2003).

Note that because the system has an ontology of operation
types that describes high-level task types as well as specific



Figure 4: User’s problem: Given site-address, find hazard-
level.

operations that are mapped to actual operations, users can
start from a high-level description of what they want without
knowing the details of what operations are available. We of-
ten find that users have only partial description of what they
want initially, and CAT can help users find appropriate ser-
vice operations by starting with a high-level operation type
and then specializing it while the pathway is being built. A
general operation type can be specialized by itself or from
the constraints introduced by other operations in the path-
way.

Interactive Construction of a Computational
Pathway

This section shows how the above checks and suggestions
are used in helping users construct a computational pathway,
using the problems described in Section 2. Our current im-
plementation of CAT supports a textual editor where users
can select services from a menu and make links by clicking
their input and output parameters. Users can also apply the
suggestions produced from CAT, which will update the path-
ways automatically, as shown in 3. Here we use conceptual
diagrams in order to highlight CAT’s report.

As described in Section 2, one of the key problems users
often have in earthquake science is to analyze the hazard
level of a given site. Most user may not know the details
of the existing services, i.e., what are available and how to
use them, and they may start with a high-level description
the problem: Given a site address, compute the hazard level.
The user may start with this high-level description of the task
as shown in Figure 4.

Given this description of the task, CAT finds that the ex-
pected result (Hazard-Level) is not achieved (i.e. not ini-
tially given and not linked to any operations), so it gener-
ates a warning and a set of suggestions based on the strate-
gies described in the previous section: first find any avail-
able data that is subsumed by the desired data type and
then find operations that can produce the desired output
from available data. Since none of that types are found,
it then computes the operations that can just produce the
output. A candidate found (Compute-Hazard-Level-given-

Figure 5: User adds Compute-Hazard-Level-give-IMR-
Input-Parameters as suggested by CAT.

Figure 6: User specializes operation for SA and Field-2000.

Input-Parameters) is a high-level ”ungrounded” operation
(i.e., there is no actual operation of that type). However,
there are operations that can produce more specific type
of objects (e.g., F2-Operation-SA-Median-Magnitude, F2-
Operation-SA-Median-VS30, etc.). CAT also notes that
the given input (Site-Address) is not used yet. Since there
is no operation that produces the unachieved result using
the unused input, CAT suggests to add an operation that
just uses the input (Compute-Lat-Long-given-Address). The
user decides to add Compute-Hazard-Level-given-Input-
Parameters in this case.

Figure 5 shows that Compute-Hazard-Level-given-IMR-
Input-Parameters instead of Compute-Hazard-Level-given-
Input-Parameters is added to the computational pathway.
Here the ontology of task types are used to find the most
specific subsumer of all the grounded operations covered
by the selected operation type. Since all the input param-
eters that the operations take are IMR-Input-Parameters, the
operation is specialized into Compute-Hazard-Level-given-
IMR-Input-Parameters.

CAT notes several problems as shown in Figure 5, includ-
ing the operation being ungrounded yet (some of the CAT
reports are not shown for brevity). For this type of prob-
lem, if the domain ontology has definitions of the qualifiers



Figure 7: User selects Median and VS30 for further special-
ization.

Figure 8: User adds EFM.

that distinguish different specializations of operation types,
the system can exploit them in generating suggestions. For
example, in our domain ontology, Hazard-Level can be spe-
cialized with respect to the intensity measure type (IMT),
the probability function used in the analysis, the simulation
module employed, etc. When there are a set of qualifiers,
each of them may provide a different way of specializing
abstract data types. That is, different combinations provide
different paths to reach the grounded objects. For exam-
ple, F2-SA-Median-wrt-VS30 can be reached by selecting
SA as the intensity measure type, Median as the probabil-
ity function, Field-2000 as the IMR used, and VS30 as the
independent variable, in any order.

When the user picks SA as the intensity measure type, its
input and output data types are recomputed according to the
actual operations that are covered, as described above. That
is, the output type changes from Earthquake-Hazard-Level
to Earthquake-Hazard-Level-with-SA. Likewise, when the
user choose FIELD-2000 as the IMR to use, its input type
changes from IMR-Input-Parameters to FIELD-2000-input-
Parameters (Figure 6).

This process of specializing ungrounded task can be con-
tinued until a ground operation is reached (F2-operation-SA-
Median-VS30) as shown in Figure 7. Since its input param-
eters are not connected yet, CAT reports those asmissing-

Figure 9: User adds Mag-Convert and D-COMP operations.

Figure 10: User adds a link between Site-Address and Lat-
Long of D-COMP.

data. The existing input (Site-Address) is not compatible
with any of the desired (missing) data types, CAT uses fix
type 3 and suggests to add additional steps that have con-
sistent output types. For example, Compute-Earthquake-
Forecast-given-Time-Span (a ground operation called EFM)
can produce a Fault-Type.

Figure 8 shows the pathway after EFM is added.
CAT finds that there a set of unused data and missing
data. Note that one of the fixes can address two dif-
ferent issues: Compute-Moment-Magnitude-given-Richter-
Scale can resolve missing-data (Moment-Magnitude of
F2-operation-SA-Median-VS30) and unused-data (Richter-
Scale of EFM).

When the user adds Mag-Convert, and then D-COMP, as
shown in Figure 9, CAT notes a mapping between Lat-Long
output from EFM and Lat-Long input of D-COMP from the
checks on missing-data and unused-data.

Figure 10 shows an example of inconsistent link where
Site-Address is directly linked to an incompatible data type,
Lat-Long. In this case, CAT suggests to add an operation
(Geocoder).

Figure 11 shows the result after adding Geocoder. The
user can continue this process until all the expected re-
sults are achieved, all the necessary input data are provided,
there are no inconsistent links, and all the operations be-



Figure 11: User adds Geocoder service operation.

Figure 12: Interactive Service Composition for Travel Plan-
ning.

come ground. As shown above, checks on missing-data and
unachieved results can give hints on unused-data, and vice
versa. If an action can address more than one issues, it might
be a better choice than than others. Results on inconsistent-
link and ungrounded-operation are used for checking links
entered by users and the groundedness of the operations.

Composing Services for Travel Planning
This section shows that how the same approach can be used
in other domains. Figure 12 shows a process of composing
services for a travel planning. The user wants to reserve a
flight first and then reserve a car based on the reserved flight.
Currently two input parameters of the Reserve-Car opera-
tion, (pickup) time and location, are not linked yet. Both of
them can be potentially linked if the Flight-Info operation is
added in between, since it produces data on Time (Depart-
Time and Arrival-Time) and Location (Depart-Airport and
Arrival-Airport) given a flight number.

As domain ontologies become richer in content, the sys-
tem will be able to make more specific suggestions. For
example, currently, the system cannot provide a direct map-
ping between input and output parameters of Flight-Info and
Reserve-Car since each of them can be mapped to more than
one sources. However, if a richer ontology of trips are given
so that the pickup time and location should be consistent
with the time that the airplane arrives at the Arrival-Airport,
then the suggestions will become more specific. That is, the
system will suggest to link Arrival-Time and Arrival-Airport

to the Reserve-Car operation. The system will be able to fil-
ter out the option of using Depart-City as the pick-up loca-
tion in the same way (in the suggestions for Missing-data in
Figure 12).

Related Work
There are various related efforts concerned with compo-
sition of web services, but they concentrate on automatic
composition and do not address the user interaction issues
raised in this proposal. Existing approaches for composition
of web services (Mcdermott 2002; Narayanan & McIlraith
2002; Sheshagiri, desJardins, & Finin 2003; Thakkaret al.
2000) use expressive languages and sophisticated reasoning
and planning techniques to generate valid compositions of
services. They complement our work in that they do not
address user interaction issues. The Web Services TookKit
(WSTK) (Srivastava 2000) includes a composition engine,
but it has very limited models of the data used by the services
that limits the support that underlying reasoners can provide.
Little attention has been paid to the interactive composition
of services. SWORD (Ponnekanti & A.Fox 2002) is a toolkit
that addresses interactive service composition. However, it
is designed for developers who have programming skills, not
for end users that are the target users of our work.

Graphical tools to lay out a workflow and draw connec-
tions among steps abound (Chinet al. 2002; BizTalk 2003;
KHOROS 2003; ProcedureCharter 2003; SmartDraw 2003)
but the tools are limited to simple checks on the process
models because there is no semantics associated to the indi-
vidual steps and links. In contrast, we assume a knowledge-
rich environment where the system can check whether the
workflow makes sense within the background knowledge
that it has.

Web service composition has many parallels with soft-
ware composition (Jennings 2001; Heineman & Councill
2001), though there are many significant differences includ-
ing the distributed nature of web services and the encap-
sulation techniques that they provide. Web services can
be seen as a higher layer of abstraction than software pro-
vides, and can be extended with expressive languages to
support composition in more powerful ways. Similar formal
techniques to those in this paper have been used success-
fully to integrate software components (Stickelet al. 1993;
Chien & Mortensen 1996; Lanskyet al. 1995), but only in
fully automated settings.

DAML-S is a semantic markup language for services that
enables the expression of a complex service as well as the
composition of services (Ankolekar 2002). Although it sup-
ports semantic description of web services by means of on-
tologies, the descriptions haven’t been fully exploited in sup-
porting the kinds of interactions described above.

Some languages to support composition of services are
based on expressive formalisms to represent complex com-
binations of services (McIlraith & Fadel 2002; McIlraith
& Son 2002). These languages include, for example, con-
ditional expressions. This work is complementary in that
it investigates the formal underpinnings of such languages,
while our focus is on usability.



Discussion and Future Work
This paper presents a framework for interactive service com-
position where the system assists users in constructing a
computational pathway by exploiting semantic description
of services. We have built a tool that analyzes a sketch of a
pathway based on the definitions of task types and their in-
put and output data types, and generates error messages and
specific suggestions to users.

We believe that our framework can be applied various
problems if appropriate domain ontologies can be accessed
and services are represented according to the domain terms
defined in the ontologies. For example we may exploit the
ontologies now available on-line including the ones avail-
able in the DAML ontology library(DAML-Ontology 2003)
that are reusable across different applications. Task ontolo-
gies are relatively rare but may become more commonplace
if they have clear value added in supporting more flexible
composition of services. Currently our task ontologies are
manually built, but we are planning to investigate a way of
generating a hierarchy of general task types according to the
kinds of input and output of given operations.

We are also investigating uses of automatic composi-
tion approaches in our interactive framework. For example,
when users want to see possible completion of the pathways
given their initial sketches, the system may send a request to
an AI planning module.

Acknowledgments
We would like to thank Marc Spraragen for his contribution
to our discussions. This research was funded by National
Science Foundation (NSF), award number EAR-0122464.

References
Ankolekar, A. 2002. Daml-s: Web service description for the
semantic web. InProc. 1st Int’l Semantic Web Conf. (ISWC 02).

BizTalk. 2003. http://www.microsoft.com/biztalk/.

Burstein, M.; McDermott, D.; Smith, D. R.; and Westfold, S. J.
2000. Derivation of glue code for agent interoperation. In Sierra,
C.; Gini, M.; and Rosenschein, J. S., eds.,Proceedings of the
Fourth International Conference on Autonomous Agents, 277–
284. Barcelona, Catalonia, Spain: ACM Press.

Chien, S., and Mortensen, H. 1996. Image processing for scien-
tific data analysis of a large image database.IEEE Transactions
on Pattern Analysis and Machine Intelligence18(8):854–859.

Chin, G.; Leung, R.; Schuchardt, K.; and Gracio, D. 2002. New
paradigms in problem solving environments for scientific com-
puting. InProceedings of the Intelligent User Interfaces.

Christensen, E.; Curbera, F.; Meredith, G.; and Weerawarana,
S. 2003. WSDL: Web service description language.
http://www.w3.org/TR/wsdl.

DAML-Ontology. 2003. http://www.daml.org/ontologies.

Fillmore, C. 1968. The case for case. InUniversals in Linguistic
Theory.

Gil, Y., and Blythe, J. 2000. How can a structured represen-
tation of capabilities help in planning? InProceedings of the
AAAI workshop on Representational Issues for Real-World Plan-
ning Systems.

Heineman, G., and Councill, W. 2001.Component-Based Soft-
ware Engineering: Putting the Pieces Together. Addison-Wesley.

Jennings, N. 2001. Building complex software systems: The case
for an agent-based approach.

KHOROS. 2003. http://www.khoral.com/.

Kim, J., and Gil, Y. 2000. Acquiring problem-solving knowledge
from end users: Putting interdependency models to the test. In
Proceedings of AAAI-2000, 223–229.

Kim, J., and Gil, Y. 2001. Knowledge analysis on process models.
In Proceedings of IJCAI-2001, 935–942.

Kim, J.; Spraragen, M.; and Gil, Y. 2004. An intelligent assis-
tant for interactive workflow composition. InProceedings of the
Intelligent User Interfaces Conference.

Lansky, A.; Friedman, M.; Getoor, L.; Schmidler, S.; and Short,
N. 1995. The collage/khoros link: Planning for image processing
tasks. InAAAI Spring Symposium on Integrated Planning Appli-
cations.

Mcdermott, D. 2002. Estimated-regression planning for interac-
tions with web services. InAI planning systems Conference.

McIlraith, S., and Fadel, R. 2002. Planning with complex actions.

McIlraith, S., and Son, T. 2002. Adapting golog for composition
of semantic web services.

Narayanan, S., and McIlraith, S. 2002. Simulation, verification
and automated composition of web services.

Paolucci, M.; Kawmura, T.; Payne, T.; and Sycara, K. 2002.
Semantic matching of web services capabilities. InFirst Int. Se-
mantic Web Conf.

Ponnekanti, S., and A.Fox. 2002. A. sword: A developer toolkit
for web service composition. InProc. of the Eleventh Interna-
tional World Wide Web Conference.

ProcedureCharter. 2003. http://www.imagespro.com/programs/2118/.

Sheshagiri, M.; desJardins, M.; and Finin, T. 2003. A planner for
composing services described in daml-s. InICAPS 2003 Work-
shop on Planning for Web Services Program.

SmartDraw. 2003. http://www.smartdraw.com/.

Spraragen, M.; Kim, J.; and Gil, Y. 2003. A formal model for in-
telligently assisted interactive workflow composition. ISI internal
report.

Srivastava, B. 2000. Web services toolkit (WSTK).

Stickel, M.; Waldinger, R.; Lowry, M.; Pressburger, T.; and Uner-
wood, I. 1993. Deductive composition from astronomical soft-
ware libraries. Technical Report, SRI International and NASA
Ames Research Center.

Sycara, K.; Lu, J.; and Klusch, M. 1999. Dynamic service match-
making among agents in open information environments. InJour-
nal ACM SIGMOD Record, Special Issue on Semantic Interoper-
ability in Global Information Systems.

Thakkar, S.; Knoblock, C.; Ambite, J.; and Shahabi, C. 2000.
Dynamically composing web services from on-line sources. In
AAAI Workshop on Intelligent Service Integration.


