Attributions

Sabine Bergler, Monia Doandes, Christine Gerard, and René Witte
Department of Computer Science
Concordia University
1455 de Maisonneuve Blvd. West
Montreal, QC, Canada, H3G 1M8
email contact: bergler@cs.concordia.ca

Abstract

We present here the outline of an ongoing research effort to recognize, represent, and interpret attributive constructions such as reported speech in newspaper articles. The role of reported speech is attribution: the statement does not assert some information as ‘true’ but attributes it to some source. The description of the source and the choice of the reporting verb can express the reporter’s level of confidence in the attributed material.

Introduction

Many broad coverage systems employ shallow, often stochastic means to ensure robustness and forego any form of linguistic analysis. Some successful systems use hybrid technology (cf. (Clarke et al. 2000), (Harabagiu et al. 2001), (Surdeanu et al. 2003), (Hovy et al. 2001)). Our research is similarly positioned for broad coverage, using shallow tools, yet embedding linguistically motivated modules for performance enhancement. We present here the outline of an ongoing research effort to recognize, represent, and interpret attributive constructions such as reported speech in newspaper articles.1

Newspaper articles have a standardized way to relate opinions, point-of-view, and sentiments: reported speech. In some articles, 90% of the sentences are direct or indirect reported speech. In most current language processing systems it is, however, ignored.

The role of reported speech is attribution: the statement does not assert as ‘true’ what amounts to the information content of the sentence, but a situation in which this content was proffered by some source. This device can be used both, to bolster a claim already made by citing a particular strong source for endorsement, ignoring the fact that an explicit attribution was made will do no great harm. This is in fact a frequent case in the type of newspaper articles typically used for large scale system development and testing (as in MUC, TREC, DUC, . . .) and this is why ignoring attribution has been tolerable. But when a text is argumentative (opposing two or more points of view on a topic) or speculative (when the final outcome of an event is not yet decided and the text uses different sources as predictors), text meaning depends on proper attribution recognition (Bergler 1995).3

To test the practicability of attribution recognition and its impact, we present three stand alone4 systems previously developed in our lab. The systems roughly cover recognition of attribution and its representation. We also outline what is required for the interpretation of attribution in order to perform standard belief revision and maintenance.

Note that this work has important differences with traditional work on belief reports. Utility texts such as newspaper articles expressly avoid using belief reports. They represent after all an evaluation by the reporter which the reader might not share. What occurs in newspaper articles is instead evidence reports which do not give rise to beliefs without an additional interpretation step. (Gerard 2000) presents one possible way to transform these evidence reports into first potential, and eventually held beliefs. But the focus here is on the extraction of a proper representation of the evidence reports from real texts that will enable the intricate reasoning about beliefs discussed in the literature (see for instance (Rapaport, Shapiro, & Wiebe 1997; Rapaport 1986)).

Recognizing reported speech and selected other construc-

1Reported speech here refers to both direct or quoted speech, and indirect reported speech. We are working towards including all attributions, including “according to the New York Times” and “the report shows . . . ”. The systems presented in this report, however, are limited to reported speech of the different patterns possible for matrix clause/subordinate clause, where the matrix clause contains at least a source NP and a reporting verb.

2The recognition and representation of attribution in other genres is analogous, but the interpretation strategies might differ.

3An argumentative or speculative structure is not limited to newspaper articles. Scientific articles, too, use reported speech for this purpose. And multi-participant political analysis segments on newscasts form the same phenomenon.

4We anticipate integrating the prototype systems for large scale automatic testing.

5See (Bergler 1992) for a detailed analysis.
Recognizing Reported Speech

Doandes (Doandes 2003) developed a context-free grammar to chunk contiguous verb groups and extracts grammatical information from the chunks (tense, aspect, modality, polarity). Using a list of possible reported speech indicating verbs, she then applies the known patterns for reported speech (Quirk et al. 1985) to separate the reporting clause from the reported material.

The development was done on 65,739 sentences from the Wall Street Journal, testing on 2404 sentences taken mainly from the Wall Street Journal, with a few articles from the DUC 2003 corpus. 513 occurrences of reported speech were found, which makes for a precision of 98.65% and a recall of 88% on identifying reported speech and determining its semantic dimensions.

Recall problems are linked to tagging errors (a basic version of the Brill tagger was used), an incomplete list of reported speech verbs, the chunking process (the NP chunker occasionally splits heavy NPs into several smaller chunks, thus obfuscating the reported speech pattern), and the fact that the chunker used a chart parser which returned the first parse tree according to some internal criterion, not necessarily the best.

Figure 2 shows the condensed version of the system’s output in the form of reported speech frames which are counted as correct only if they fully match the hand annotated Gold standard. Additional information in the matrix clause (so called circumstantial information, such as time, place, manner adverbials or prepositional phrases) are sometimes not parsed correctly. In this case, the frame is not considered correct, even though the main aspects of the reported speech are correctly analyzed. The implementation has a precision of 88% on identifying reported speech and determining its internal structure, its recall is 56%.

Representation

The sentence-by-sentence representation of Figure 2 is of course but a beginning. Even in our simple text we see that the same source occurs twice (Republicans, They), suggesting strongly that both sentences form a logical unit. The basic frames for S_3 and S_4 should be merged into one larger profile for that source (see Bergler 1995) for more detail on profiles and their use in text representation.

The use of profiles is simple: profiles provide a partition of the text according to the source of the information transmitted. Any evaluation of the reliability/credibility will thus affect the entire set. Moreover, the set of sources in a text in
System believes

Reader believes

Reporter Jeffrey H. Birnbaum believes

\textit{Sen. Packwood} said

\begin{itemize}
 \item \texttt{Source-list(Sen. Packwood, h, n, n, n)}
\end{itemize}

Republicans said

\begin{itemize}
 \item \texttt{[Republicans can garner a majority in the 100-member Senate for a capital-gains tax cut. Source-list(Republicans, n, n, n, n)]}
 \item \texttt{[the Democrats are unfairly using Senate rules to erect a 60-vote hurdle. Source-list(Republicans, n, h, n, n)]}
\end{itemize}

Democrats said

\begin{itemize}
 \item \texttt{[the proposal, which also would create a new type of individual retirement account, was fraught with budget gimmickry that would lose billions of dollars in the long run. Source-list(Democrats, n, n, n, n)]}
\end{itemize}

Figure 3: \textit{Percolator} representation of the Profiles in Figure 2

translation of the strength feature of the reporting verb into a credibility rating of the reported information: \texttt{acknowledge} as a reporting verb here carries an implication that the information of the complement clause is negative for the subject. If a source is reported to \texttt{acknowledge} information this has to be rated as information of high reliability\footnote{Possible values for the prototype were \texttt{high}, \texttt{neutral}, and \texttt{low}.} because sources will not falsely make detrimental statements.

The Source-list pairs the reporter’s apparent evaluation of the source and the reported information from lexical semantics with the reader’s evaluation of the source and the reported information. This reflects a reader’s ability to immediately discount the reporter’s apparent evaluation based on previous knowledge or on previous beliefs (about the reporter, the source, or the information). But a reader with no relevant previous beliefs has to rely solely on the intrinsic evaluation of the reporter.

\textit{Percolator} transforms this representation in several steps by pulling information from nested contexts into their surrounding contexts (a process called “percolation” by (Wilks & Ballim 1991)). In every step the source list grows to reflect the nesting that has been lost, thus making explicit the path of attribution. Gerard showed with several examples that an extension of Wilks’ and Ballim’s percolation mechanism allows to properly combine subjective evaluations of each level of attribution. But the representation of (Wilks & Ballim 1991) was based on beliefs, so Gerard introduced the notion of a potential belief, defined as information that might or might not turn into a held belief given further evidence. This reflects a reader’s ability to accommodate contradictory information: having read an article that presents two contradictory theories, one can argue both ways if one has no own opinion on the matter until there is evidence that “settles” the issue. This representational device allows to delay the decision as to whether information is believed until a certain threshold of comfort is reached. The text here would...
System believes
Reader potentially believes

Reader believes

—

Reader believes

[“We don’t have the votes for cloture today.”
Source-list[Sen. Packwood, Reporter Jeffrey H. Birnbaum, h, n, n, n]]
[Republicans can garner a majority in the 100-member Senate for a capital-gains tax cut.
Source-list[Republicans, Reporter Jeffrey H. Birnbaum, n, n, n, n]]
[the Democrats are unfairly using Senate rules to erect a 60-vote hurdle.
Source-list[Republicans, Reporter Jeffrey H. Birnbaum, n, h, n, n, n]]
[the proposal, which also would create a new type of individual retirement account, was fraught with budget gimmickry that would lose billions of dollars in the long run.
Source-list[Democrats, Reporter Jeffrey H. Birnbaum, n, n, n, n]]

Figure 4: Final Percolator structure of Text 1 in the case where the reader has no prior knowledge or beliefs.

be transformed into a structure as given in Figure 4.

Conclusion

Attribution is a phenomenon of great interest and a principled treatment is important beyond the realm of newspaper articles. We contend that the way natural language has evolved to reflect a culture’s understanding of attribution can serve as a guide to a principled representation that can form the basis for a belief revision or maintenance system. We have distilled three major steps for this process: recognition, representation, and interpretation. Here we have only been able to hint at how each step might be performed. We will integrate the individual modules into an attribution resolution module, which will provide a test bed for two different kinds of experiments: without taking the interpretations computed by Percolator into account we will measure the usefulness of representing attributions and the argumentative or speculative structure of a text explicitly for Question Answering, Summarization, and Information Extraction. With the Percolator output we will be able to determine experimentally exactly what the semantic contribution of different lexical items is on text comprehension and belief acquisition.

Acknowledgments

Frank Rudzicz was instrumental in setting up Doandes’ environment. This work was funded in part by NSERC.

References

[13] See, for instance, Native American languages which grammaticalize attribution.