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Abstract

4CAPS is a cognitive architecture of interest to both
cognitive science and AL 4CAPS is of interest to cognitive
science because it supports models of neuroimaging data
collected using fMRI and PET. 4CAPS should be of interest
to Al because it organizes human information processing in
an optimal and mathematically tractable form. This paper
focuses on the adaptivity of 4CAPS models in the face of
changing task demands and fluctuating resource
availability. It illustrates this adaptivity in the domains of
problem solving, spatial reasoning, and sentence
comprehension. It also identifies new forms of adaptivity
ripe for future research.

Introduction

Cognitive science and artificial intelligence have drifted
apart over the past twenty years. The split was not
deliberate, but rather the result of diverging interests.
Cognitive science is currently in the midst of a
neuroscience revolution. Neuroimaging studies of normal
young adults and patients with focal lesions have yielded
data that demand different computational explanations
than those available in AI. Conversely, Al has been in the
midst of its own revolution (or maturation) from free-form
computational explorations to rigorous mathematical and
statistical developments.

We contend that it is time for cognitive science and
artificial intelligence to reconcile. This paper describes one
form that this reconciliation can take: the 4CAPS cognitive
neuroarchitecture. As a cognitive architecture, 4CAPS is a
unified theory of high-level cognition cast not as an
axiomatic theory, but rather as a computational formalism.
But it is more than that. It is capable of accounting for
neuroimaging data collected from both normal young
adults and patients with focal lesions. As a computational
formalism, 4CAPS should be of interest to Al researchers
because it makes the interesting — and mathematically
tractable — claim that human information processing is, at
both the cognitive and cortical levels, adaptive.
Specifically, it is an optimal solution to the problem of
scheduling computation in a way that respects resource
constraints and maximizes throughput.
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After describing the operating principles embodied in
4CAPS, this paper examines two forms of adaptivity using
as examples models of three domains of high-level
cognition: problem solving, spatial reasoning, and sentence
comprehension. The paper concludes with a consideration
of other forms of adaptivity suggested by 4CAPS.

Operating Principles

4CAPS embodies a number of operating principles that
govern cortical and cognitive information processing. (See
Just and Varma (2005) for more details.)

Centers

A 4CAPS model consists of multiple centers, each
corresponding to a distinct brain area (i.e., gyrus or
sulcus). The number of centers is denoted M. Each center
is a hybrid symbolic-connectionist computational system.
From a symbolic perspective, it is a production system.
Production rules encode procedural knowledge and
declarative elements encode declarative knowledge. From
a connectionist perspective, production rules are graded,
declarative elements are annotated with activation levels,
and the control structure is fully parallel. The thresholds on
the condition elements of productions and the weights on
their action elements cause them to function like the links
of connectionist networks. The activations of declarative
elements, which represent their relevance for current and
future processing, function like the activation levels of the
units of connectionist networks. A third connectionist
property is the adoption of parallel processing: at each time
step, all matching productions fire (i.e., there is no conflict
resolution scheme), directing activation from declarative
elements on their condition sides to declarative elements
on their action sides modulo their weights. In this way,
4CAPS centers combine the computational power of
variable binding over symbolic structures and the
activation dynamics of connectionist networks.



Multiple Specialization

Each center can perform multiple functions. A function is a
convenient abstraction for a set of productions and
declarative elements that together implement a cognitively
interesting operation, such as parsing or maintaining a goal
stack. Each center can perform multiple functions, and
conversely, each function can be performed by multiple
centers. This proposal is intermediate between modularity,
which maps one and only function to each center, and
equipotentiality, which maps every function to every
center. The specialization of a center i for a function j is
denoted S;, where S;&[1, ). A value of 1.0 represents
perfect specialization — performing one unit of function j
requires 1.0 units of center i's activation resources. Larger
values represent lesser specializations. If there are N
functions, then the total resource demand of center i at a
particular point in time is:
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where A; represents the units of function j performed by
center i.

Resource Constraints

Each center possesses a finite supply of resources (i.e.,
activation) reflecting biological limitations on
computation. Specifically, the resource capacity of center i

is denoted C; and the constraint:
N
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is enforced at all times. Performing a sufficiently complex
task can exhaust the resource supply of a center specialized
for required functions. When this happens, processing
spills over from well-specialized centers experiencing
resource shortfalls to less-specialized centers with spare
resources. The spillover of function is a natural
consequence of the algorithms described below.

Capacity Utilization

The capacity utilization of a center i is the proportion of

resources currently in use:
N
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CU is a measure of how hard a center is working. The
fundamental claim of 4CAPS is that the CU of a center
predicts neural activity in the corresponding brain area
(i.e., activation as measured by fMRI or PET).

Collaborative Processing

A 4CAPS model consists of multiple centers that
collaborate in a large-scale network to perform a task. The
membership and topology of the network change over
time. Two factors determine the degree to which a center
participates in the network at a particular point in time.
The first is whether it is specialized for any of the
functions awaiting execution. The second is whether the
center possesses spare resources to fuel their execution.
The allocation problem is to assign functions to centers in
a way that maximizes cognitive throughput while
minimizing resource consumption.

More precisely, at each point in time, a subset of the N
functions awaits execution. The activation requested by
function j is denoted R;. Recall that A;; denote the amount
of function j to be performed by center i; the goal is to
determine their values. The A; are constrained in two
ways. First, M constraints, one for each center i, stipulate
that no center can perform more work than its resources
allow; these are the (1) above. Second, N constraints, one
for each function j, stipulate that as much of each function
as possible (but no more than the requested amount) is
performed:
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Many different allocations satisfy the constraints (1) and
(2), such as A;=0 for all i and j. We therefore require a
measure of the goodness of an allocation. This measure
can be expressed as a linear combination of the A; to be

maximized:
M N
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Defining the weights as W;:=1/S; ensures that, resource
considerations aside, function j will be assigned to the
center i most specialized for it (i.e., whose S;; is minimal).

(1), (2), and (3) constitute a linear programming (LP)
problem that can be solved using the simplex algorithm
(Dantzig & Thapa, 1997). The result is an allocation of
functions to centers that maximizes cognitive throughput
while minimizing resource consumption.

Adaptivity

A task can be decomposed into a partial order of functions
to be performed. At any point in time, then, there exists a
mixture of pending functions. Centers assemble
themselves into a large-scale network capable of
performing these pending functions. The membership and
topology of the network — its nodal centers and the edges
along which they exchange partial products — are adaptive
in two critical ways. First, they adapt to changes over time
in the mixture of functions to be performed. Second, they
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Figure 1. (a) Sample TOL problems. (b) fMRI data: frontal activations (Newman et al., 2003). (c) Model: Executive CUs.

adapt to changes in resource availability, both over the
relatively short timescale of task performance and over the
longer timescale of lifespan development. This section
illustrates both kinds of adaptivity with 4CAPS models of
various tasks (Just & Varma, 2005).

Adaptivity to Changing Task Demands

During the course of task performance, the mixture of
pending functions to be performed can change. This can
impose increasing resource demands on centers that
already belong to the large-scale network.

For example, consider a 4CAPS model of Tower of
London (TOL) problem solving. The TOL task is a variant
of the Tower of Hanoi task that is easier to administer to
neuropsychological patients. Example TOL problems are
shown in Figure la. The first is rather simple; it can be
solved by perceptual (i.e., similarity-based) considerations
alone. The second is more difficult. It requires the
establishment of subgoals to clear blocking balls before
deeply buried balls can be moved. There is evidence that
the frontal lobe, specifically right and left dorsolateral
prefrontal cortex (DLPFC), perform goal operations: to the
former area is attributed planning through the articulation
of goal-subgoal hierarchies, to the latter selection between
goal-based moves proposed by right DLPFC and
perceptually-based moves proposed by posterior brain
areas. For example, patients with frontal lesions can solve
simple TOL problems that require only perceptually-based
moves, but have difficulty with problems that require the
formulation of a plan and the execution of goal-based
moves (Shallice, 1982). Newman et al. (2003) collected
more direct evidence for this claim. They had participants
solve blocks of problems that varied in difficulty (i.e., the
amount of goal-based processing required). Using fMRI,
they measured the activations in left and right DLPFC;
these are shown in Figure 1b. A 4CAPS model of TOL
problem solving was constructed that includes centers
corresponding to these two brain areas. The RH-Executive

center is specialized for formulating plans, i.e., for
generating goals when problem solving fails. The LH-
Executive center is specialized for selecting between the
goal-based moves proposed by RH-Executive and the
perceptually-based moves proposed by centers
corresponding to the parietal areas thought to perform
visuospatial processing. The CUs of the Executive centers
are shown in Figure lc. They are an increasing function of
problem difficulty, mirroring the neuroimaging data
(r=0.96, p<0.01).

Another example of adaptation to changing task
demands is found in a 4CAPS model of spatial reasoning.
In the classic mental rotation task shown in Figure 2a,
participants must decide whether the figures are congruent
to or mirror images of one another. The classic behavioral
result is that reaction time is a linear function of the
angular disparity between the two figures (Shepard &
Metzler, 1971). This is typically interpreted to mean that
participants rotate one figure until it is aligned with the
other; the greater the required rotation, the longer the
response time. Carpenter et al. (1999) found an analogous
result using fMRI. They had participants perform mental
rotation in the scanner. Figure 2b plots activations
observed in left and right parietal cortex as a function of
angular disparity. The former area is thought to subserve
the generation and maintenance of visuospatial
representations, the latter the direction of visuospatial
attention. The longer the required rotation, the greater the
resource demands on these areas to perform the
visuospatial representation and attention functions for
which they are specialized, and thus the greater the
observed activations. A 4CAPS model of mental rotation
was constructed that includes centers corresponding to left
and right parietal cortex. LH-Spatial generates
intermediate visuospatial representations at each step along
the rotation path; the greater the angular disparity, the
longer the rotation path, the more steps it contains, and
therefore the more intermediate representations that must
be generated. RH-Spatial proposes possible rotations along
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Figure 2. (a) Sample mental rotation problem. (b) fMRI data: parietal activations (Carpenter et al., 1999). (c) Model: Spatial CUs.

the x, y, and z axes at each step along the rotation path; the
greater the angular disparity, the longer the rotation path,
the more steps it contains, and therefore the more possible
rotations that must be proposed. The CUs of the Spatial
centers are shown in Figure 2c. They are an increasing
function of angular disparity, mirroring the neuroimaging
data (r=0.87, 0.10<p<0.15).

Adaptivity to Changing Resource Demands and
Availability

A second form of adaptivity is how 4CAPS handles
changing resource demands. If the resource demands on a
center well-specialized for functions to be performed are
greater than the available resource supply, then processing
will spill over to a center less-specialized for the functions,
but possessing spare resources. We consider two variants
of this form of adaptivity exhibited by a model of sentence
comprehension.

The first form occurs when normal readers comprehend
complex sentences. Consider the three sentences listed in
Figure 3a. They are complex in that each consists of two
clauses. The first simply conjoins the two clauses.

Processing the two clauses is likely to tax the language
network. The second and third sentences embed one clause
(the ‘relative clause’) in the center of the other (the ‘main
clause’). Processing center-embedded sentences is
especially resource-demanding because the partial
products associated with the beginning of the main clause
must be buffered while the interrupting relative clause is
processed. The second sentence is a ‘subject-relative’
because the first noun phrase of the main clause is the
subject of the relative clause; the third sentence is called an
‘object-relative’ because the first noun phrase of the main
clause is the object of the relative clause. Object-relative
are more resource demanding than subject-relatives
because the first noun phrase of the main clause must be
buffered longer before its position in the relative clause is
reached (at which point it can be integrated into the
emerging representation). Many behavioral studies find
that object-relative sentences take longer to comprehend
than subject-relative sentences, with the difference
localized to the relative clause. Just et al. (1996) found an
analogous result using fMRI: the more complex a
sentence, the more activation observed in left inferior
frontal gyrus (left IFG; Broca’s area) and left
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Figure 3. (a) Sentence types. (b) fMRI data: IFG activations (Just et al., 1996). (c) Model: Structure CUs.




superior/middle temporal gyrus (left S/MTG; Wernicke’s
area), the core areas of the language network. Critically,
they also found that the more complex a sentence, the
more likely it was to exhaust the resources available in the
core areas and for processing to spill over to their right-
hemisphere homologs, which are thought to be specialized
for the same language functions, albeit at lower levels of
efficiency. This is shown in Figure 3b for left and right
IFG. A 4CAPS model of sentence comprehension was
constructed with centers corresponding to left and right
IFG and S/MTG. The Construct center corresponds to left
IFG. It is specialized for the manufacturing of new
structured representations (e.g., phrases) and for the
maintenance of existing structured representations (e.g.,
verbal working memory). RH-Construct is specialized for
the same functions, but to a lesser degree. As the
complexity of a sentence increases, so does its buffering
requirements, and therefore the demand on Construct’s
resources. As this demand exceeds the available supply at
the most taxing portion of a sentence, processing spills
over to RH-Construct. This adaptive recruitment of RH-
Construct into the language network is shown in Figure 3c.
The correlation between human and model performance is
0.98 (p<0.001).

The second form of adaptive recruitment occurs over
longer timescales. Consider damage to a particular brain
area, such as following stroke. The damage can be viewed
as a drastic reduction in the available resource supply.
Without adequate resources, the area will not be able to
perform the functions for which it is specialized, and other
areas specialized for the same functions will be recruited
into the large-scale network on a more-or-less permanent
basis. For example, Thulborn et al. (1999) imaged a patient
who had suffered a lesion to left IFG but had recovered
much of his language ability six months later. They had
him read simple active sentences (e.g., The senator
attacked the reporter.) and measured the activation in left
and right IFG and S/MTG; these are shown in Figure 4a.
The striking result is the spillover of processing from left
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to right IFG, especially in contrast to the left-lateralized
activation in S/MTG. The 4CAPS sentence comprehension
model was used to simulate these results. The Structure
center was stripped of its resources to simulate the effect
of the left IFG lesion. The CUs of the lesioned model’s
centers are shown in Figure 4b. The model correctly
accounts for the shift in processing from the damaged
center to its less-specialized though intact right-
hemisphere homolog (r=0.99, p<0.01).

Conclusion

4CAPS bears directly on the fourth question of this
symposium: Is adaptiveness an essential component of
intelligence? 4CAPS places adaptivity at the heart of
human information processing, in two ways. First, as the
functional demands of task performance change, centers
specialized for these functions are recruited into the large-
scale network. Second, as the resource demands of task
performance increase (or when the resource supply is
drastically reduced following damage), processing spills
over to other centers with similar functional
specializations, recruiting them into the large-scale
network.

4CAPS bears on two other questions of this symposium.
The third question is: Are multi-level heterogeneous
approaches beneficial? 4CAPS is multi-level in
simultaneously addressing both the cognitive and cortical
levels of human information processing. In fact, it makes
the stronger claim that neither level can be completely
understood without the constraint of the other. 4CAPS is
heterogeneous in that its models are not monolithic
systems, but rather mosaics of centers with interlocking
functional specializations. The sixth question is: Are
specialized, modular components a reasonable approach
to general intelligence? 4CAPS claims that brain areas are
not modules: they are not specialized for single functions
and they do not interact in rigid ways. Modularity errs
because it focuses on the nodes of large-scale networks
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Figure 4. (a) fMRI data: normal and lesioned activations (Thulborn et al., 1999). (b) Model: normal and lesioned CUs.



and ignores the topologies that connect them: their initial
assembly and dynamic reconfiguration with changing
functional and resource demands.

We conclude by considering two implications of the
adaptivity of 4CAPS for cognitive science and AL

Fluid Intelligence and Induction

It is common to localize the flexibility of human cognition
to particular brain areas. For example, Duncan et al. (2000)
attribute fluid intelligence — the ability to solve abstract,
culture-free problems — to prefrontal areas. 4CAPS
suggests that the flexibility of human thought is not the
product of particular brain areas, but rather the fluency
with which they assemble themselves into large-scale
networks appropriate for performing novel tasks. This
suggests a novel view of induction. The problem of
inducing new strategies has existed since at least Plato’s
Meno. The most common solution is to propose a learning
mechanism. 4CAPS suggests a different solution: New
strategies result in part from new organizations of existing
brain areas into non-canonical large-scale networks. This
is potentially very productive. For example, if there are M
brain areas, then for a given non-empty subset containing
m areas, there are 2" ways to connect them into a
large-scale network. This large space of possible networks
contains the canonical network for performing the task at
hand as well as a number of alternate networks. 4CAPS
provides a framework in which to think about how these
alternatives are discovered. There are several
circumstances under which a model might assemble its
centers in a non-canonical way. One is a change in
resource availability, whether transient (e.g., because of
the removal of a typical load or the imposition of a new
one) or permanent (e.g., through cognitive development,
cognitive aging, following damage). When this happens, a
non-canonical network might assemble, one that
configures a novel subset of centers using a novel
topology. The result of this change at the cortical level will
be a new strategy at the cognitive level.

Linear Programming

A novel contribution of 4CAPS is the formalization of the
adaptivity of human cognition using the LP formalism.
The potential of this tool for modeling cortical and
cognitive information processing is largely unexplored,
and calls out for a joint effort between cognitive science
and Al For example, 4CAPS currently solves the
allocation problem in a centralized manner: at each point
in time, the resource demands of the functions to be
performed and the constraints on resource availability are
cast as an LP problem and simplex applied to determine an
allocation of functions to centers. That this is currently
done using centralized data structures and algorithms is an
implementation detail. One area for future research is the

development of methods for solving the allocation problem
that are consistent with the parallel and distributed nature
of cortical computation. Under such methods, each center
will make allocation decisions, such as when to shift and
when to take on excess processing, based primarily on
locally-available information (i.e., from neighboring
centers in the large-scale network). It is likely that these
local allocation decisions will be suboptimal at the global
level. A first step in this direction has already been taken
by researchers interested in the solution of large LPs
through parallel processing (Lustig & Rothberg, 1996;
Maros & Mitra, 2000). We believe this to be fertile ground
for future research at the intersection between cognitive
science and Al (Boddy & Dean, 1994; Korf, 1990).
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