
Abstract
The paper studies the problem of analyzing user comments and
reviews of products sold online. Analyzing such reviews and
producing a summary of them is very useful to both potential
customers and product manufacturers. By analyzing reviews,
we mean to extract features of products (also called opinion
features) that have been commented by reviewers and deter-
mine whether the opinions are positive or negative. This paper
focuses on extracting opinion features from Pros and Cons,
which typically consist of short phrases or incomplete sen-
tences. We propose a language pattern based approach for this
purpose. The language patterns are generated from Class Se-
quential Rules (CSR). A CSR is different from a classic se-
quential pattern because a CSR has a fixed class (or target). We
propose an algorithm to mine CSR from a set of labeled
training sequences. To perform extraction, the mined CSRs are
transformed into language patterns, which are used to match
Pros and Cons to extract opinion features. Experimental results
show that the proposed approach is very effective.

Introduction１
The Web has dramatically changed the way that consumers
expressing their opinions. They can now post reviews of
products at merchant sites (e.g., amazon.com and c|net.com),
dedicated review sites (e.g., epininons.com), Internet forums
and blogs. These reviews provide excellent sources of con-
sumer opinions on products, which are very useful to both
potential customers and product manufacturers. Techniques
are now being developed to exploit these sources to help
companies and individuals to gain such information effec-
tively and easily (e.g., Hu and Liu 2004).

In this paper, we focus on consumer reviews of products,
which are of very similar nature to blogs with ungrammatical
sentences, incomplete sentences (sentence fragments), short
phrases, and missing punctuations.

There are three main review formats on the Web.
Format (1) - Pros and Cons: The reviewer is asked to describe

Pros and Cons separately. C|net.com uses this format.
Format (2) - Pros, Cons and detailed review: The reviewer is

asked to describe Pros and Cons separately and also write a
detailed review. epinions.com and MSN uses this format.

Format (3) - free format: The reviewer writes freely, i.e., no
separation of Pros and Cons. Amazon.com uses this for-
mat.

Compilation copyright © 2006, American Association for Artificial Intel-
ligence (www.aaai.org). All rights reserved.

In this paper, we propose to analyze and summarize reviews
of format (2). We aim to identify product features that have
been commented on by customers in a set of reviews and use
them to summarize the reviews. To summarize reviews, we
display the number of positive and negative reviews for each
product feature, which show whether the customers like or
dislike the feature. Note that for reviews of format (2),
opinion orientations (positive or negative) of features are
known as Pros and Cons are separated.

In (Hu and Liu 2004), several techniques were proposed to
identify both product features and their opinion orientations
from reviews of format (3). For format (3) (and also (1)),
reviewers typically use full sentences. However, for format
(2), Pros and Cons tend to be very brief. For example, under
Cons, one may only write: “heavy, bad picture quality, bat-
tery life too short”, which are elaborated in the detailed re-
view. (Liu, Hu and Cheng, 2005) proposed an initial method
to extract product features from Pros and Cons based on
association rules. However, association rule mining is not
suitable for this task because association rule mining is un-
able to consider the sequence of words, which is very im-
portant in natural language texts. Thus, many complex ad hoc
post-processing methods are used in order to find patterns to
extract features.

In this work, we propose a more principled mining method
based on sequential pattern mining. In particular, we mine a
special kind of sequential patterns called Class Sequential
Rules (CSR). As its name suggests, the sequence of words is
considered automatically in the mining process. Unlike
standard sequential pattern mining, which is unsupervised,
we mine sequential rules with some fixed targets or classes.
Thus, the new method is supervised. To our knowledge, this
is the first work that mines and uses such kind of rules.

The mined CSRs are used to extract product features from
Pros and Cons in format (2). Note that we do not analyze
detailed reviews in format (2) as they are elaborations of Pros
and Cons. Analyzing short segments in Pros and Cons pro-
duce more accurate results. Our experimental results show
that the proposed method is highly effective.

Related Work
In (Hu and Liu 2004), some methods are proposed to analyze
customer reviews of format (3). However, since reviews of
format (3) are usually complete sentences, the techniques in
(Hu and Liu 2004) are thus not suitable for Pros and Cons of
format (2). The work of [Popescu and Etzioni 2005] also

Opinion Feature Extraction Using Class Sequential Rules
Minqing Hu and Bing Liu
Department of Computer Science
University of Illinois at Chicago

851 South Morgan Street
Chicago, IL 60607-7053
{mhu1, liub}@cs.uic.edu

works on complete sentences and thus not suitable for sen-
tence fragments and short phrase in Pros and Cons. In (Liu,
Hu and Cheng, 2005), a method is also proposed to extract
product feature from Pros and Cons of format (2). However,
as we discussed in the Introduction section, the method is
very complex and rather ad hoc because association rules
cannot naturally capture word relations.

(Morinaga et al, 2002) compares different products in a
category through search to find the products reputation. It
does not analyze reviews, and does not identify product
features. Below, we present some other related research.

Terminology Finding: There are basically two techniques
for terminology finding: symbolic approaches that rely on
noun phrases, and statistical approaches that exploit the fact
that words composing a term tend to be found close to each
other and reoccurring (Bourigault, 1995, Daille, 1996, Jac-
quemin, and Bourigault, 2001, Justeson and Katz, 1995).
However, using noun phrases tends to produce too many
non-terms, while using reoccurring phrases misses many low
frequency terms, terms with variations, and terms with only
one word. As shown in (Hu and Liu 2004) using the existing
terminology finding system FASTR (FASTR) produces very
poor results. Furthermore, using noun phrases is not suffi-
cient for finding product features. We also need to consider
other language components (e.g., verbs and adjectives).

Sentiment Classification: Sentiment classification classi-
fies opinion texts or sentences as positive or negative. Work
of (Hearst, 1992) on classification of entire documents uses
models inspired by cognitive linguistics. (Das and Chen,
2001) uses a manually crafted lexicon in conjunction with
several scoring methods to classify stock postings. (Tong,
2001) generates sentiment timelines as it tracks online dis-
cussions about movies.

(Turney, 2002) applies a unsupervised learning technique
based on mutual information between document phrases and
the words “excellent” and “poor” to find indicative words of
opinions for classification. (Pang, Lee and Vaithyanathan,
2002) examines several supervised machine learning meth-
ods for sentiment classification of movie reviews. (Dave,
Lawrence and Pennock, 2003) also experiments a number of
learning methods for review classification. (Agrawal et al,
2003) finds that supervised sentiment classification is inac-
curate. They proposed a method based on social network for
the purpose. However, social networks are not applicable to
customer reviews. (Hatzivassiloglou and Wiebe, 2000) in-
vestigates sentence subjectivity classification. Other related
works include (Nasukawa and Yi, 2003, Nigam and Hurst
2004, Riloff and Wiebe, 2003, Wilson, Wiebe and Hwa,
2004, Yu, and Hatzivassiloglou, 2003).

Our work differs from sentiment and subjectivity classi-
fication as they do not identify features commented on by
customers or what customers praise or complain about. Thus,
we solve a related but different problem.

Problem Statement
We first describe the problem statement, and then discuss the
new automatic technique for identifying product features
from Pros and Cons in reviews of format (2).

Let P be a product and R = {r1, r2, …, rk} be a set of reviews
of P. Each review rj consists of a list of Pros and Cons.
Definition (product feature): A product feature f in rj is an
attribute/component of the product that has been commented
on in rj. If f appears in rj, it is called an explicit feature in rj. If
f does not appear in rj but is implied, it is called an implicit
feature in rj.
For example, “battery life” in the following opinion segment
is an explicit feature:
 “Battery life too short”
“Size” is an implicit feature in the following opinion segment
as it does not appear in each sentence but it is implied:

 “Too small”
Figure 1 shows a review of format (2). Pros and Cons are
separated and very brief. We do not study full reviews as they
basically elaborate on Pros and Cons.

The task: Our objective in this paper is to find all the explicit
and implicit product features on which reviewers have ex-
pressed their (positive or negative) opinions.

Class Sequential Rules Mining
We propose a supervised sequential pattern mining method
to find language patterns to identify opinion (product) fea-
tures from Pros and Cons.

Let I = {i1, i2, …, in} be a set of all items and C = {c1, c2, …,
cm} be a set of class items and C⊂ I. A sequence is an ordered
list of items, denoted by <i1i2…il>. A sequence with length l
is called an l-sequence. A sequence s1 = <a1a2…an> is called
a subsequence of another sequence s2 = <b1b2…bm> or s2 a
supersequence of s1, if there exist integers 1 ≤ j1 < j2 < … <
jn-1 ≤ jn such that a1 = bj1, a2 = bj2, …, a1 = bjn.

A sequence database S is a set of tuples <sid, s>, where
sid is a sequence_id and s a sequence. A tuple is said to
contain a sequence si, if si is a subsequence of s. A class
sequential rule (CSR) is an implication of the form

X→ Y,
where X is a sequence <s1x1s2x2…xlsr+1> (si = <> or <i1i2…ik >
and im∉C, and xi denotes a possible class at this position, xi
∈I, for 1≤ i ≤ l) and Y is a sequence <s1ck1s2ck2…ckrsl+1> (cki
∈C, for 1≤ i ≤ r). The support of a CSR csri in a sequence
database S is the number of tuples in the database containing
Y. The confidence of a CSR csri is the support of Y divided by
the support of X and Y. A tuple <sid, s> is said to cover a
CSR csri, if X is a subsequence of s. A tuple is said to contain
a CSR csri, if Y is a subsequence of s.

Table 1 gives an example sequence database which has 5
tuples, with c1 and c2 denoting the classes. We have a CSR

Figure 1: An example review of format (2)

<<ab>x<gh>>→ <<ab>c1<gh>> with support of 2 and con-
fidence of 2/3, as sequence 10 and 50 contains the rule while
sequence 10, 20 and 50 covers the rule.

Given a sequence database, minimum support and mini-
mum confidence as thresholds, class sequential rule mining
finds the complete set of class sequential rules in the data-
base. In this paper, we mine the class sequential rules that
have product features as class items.

sequence_id sequence

10 <abdc1gh>
20 <abeghk>
30 <c2kea>
40 <dc2kb>
50 <abc1fgh>

Table 1. An example of sequence database

ClassPrefix-Span: Class Sequential Rules Mining
We now present the algorithm ClassPrefix-Span to mine
class sequential rules. Although there are several efficient
sequential pattern mining algorithms, none of them addresses
the specific problem of mining class sequential rules. Here
we adapt the pattern growth method in (Pei et al, 2004) for
the task, the general idea is outlined as follows: as we are
only interested in patterns that contain classes, we first find
the patterns that have classes as suffix. Then taking the
generated patterns as prefix, we can find all the class se-
quential rules by pattern growth.

The algorithm recursively projects a sequence database
into a set of smaller databases associated with the prefix
pattern mined so far, and then mines locally frequent patterns
in each projected database.

Let us examine the proposed approach for mining CSRs
based on our running example.
Example. For the same sequence database S in Table 1 with
minimum support = 2, CSRs in S can be mined in the fol-
lowing steps:
1. Divide search space for each class and find length-1

patterns. The complete set of patterns can be partitioned
into the following three subsets according to the two
classes: 1) the ones with class c1 {sequence 10 and 50}, 2)
the ones with class c2 {sequence 30 and 40}, and 3) the
ones without any class {sequence 20}. The length-1 pat-
terns are: <c1>:2, <c2>:2 (2 is the support).

2. Find subsets of suffix patterns for each class. The sub-
sets of patterns that have class as suffixes can be mined by
constructing the corresponding sets of projected
databases and mining each recursively. The projected
databases as well as suffix patterns found in them are
listed in Table 2.
a. Find patterns with suffix <c1>. Only subsequences

ending with <c1> should be considered. For example,
in <abdc1gh>, only the subsequence <abd> should be
considered for mining patterns with suffix <c1>.

The sequences in S are projected with regards to
<c1> to form the projected database, which consists of
two prefix sequences: <abd> and <ab>.

By scanning the projected database for <c1>, its
locally frequent items are a:2 and b:2. Thus, all the
length-2 patterns suffixed with <c1> are found, and
they are: <ac1> and <bc1>.

Recursively, all patterns with suffix <c1> can be
partitioned into two subsets: 1) those suffixed with
<ac1>, and 2) those with <bc1>. These subsets can be
mined by constructing respective projected databases
and mining each recursively as follows:
i. The projected database for <ac1> consists of no

subsequence. Thus the processing of this projected
database terminates.

ii. The projected database for <bc1> consists of sub-
sequences ending with <bc1>: <a> and <a>. Re-
cursively mining the projected database returns
one pattern: <abc1>. It forms the complete set of
patterns suffixed with <bc1>.

b. Find patterns with suffix <c2>. This can be done by
constructing projected databases and mining them
respectively. The projected databases and the pat-
terns found are shown in Table 2.

Class Sequence projected db Suffix

patterns
c1 <abdc1gh>,

<abc1fgh>
<abd>, <ab> <c1>, <ac1>,

<bc1>, <abc1>
c2 <c2kea>,

<dc2kb>
<>,
<d>

<c2>

no_class <abeghk> - -

 Table 2. Projected databases and patterns
3. Find patterns with generated suffix patterns as pre-

fixes. The sequence database can be partitioned into
five subsets according to the five generated prefixes: 1)
the ones with prefix <c1>, 2) the ones with prefix
<ac1>,…, and 5) the ones with prefix <c2>. The pro-
jected databases and the patterns are listed in Table 3.

prefix projected db Prefix patterns
<c1> <gh>, <fgh> <c1g>, <c1h>,<c1gh>

<ac1> <gh>, <fgh> <ac1g>, <ac1h>, <ac1gh>
<bc1> <gh>, <fgh> <bc1g>, <bc1h>,<bc1gh>
<abc1> <gh>, <fgh> <abc1g>, <abc1h>, <abc1gh>
<c2> <kea>, <kb> <c2k>
Table 3. Projected databases and patterns

a. Find patterns with prefix <c1>. Only the subse-
quence prefixed with the occurrence of <c1> will be
considered. The projected database for <c1> thus in-
cludes two suffix sequences: <gh> and <fgh>. Note
that the current projected database for <c1> is dif-
ferent from the database when projected for generat-
ing patterns in step 2.a. We are now projecting for-
wards but previously we projected backwards.

By scanning the projected database for <c1>, its
locally frequent items are g:2 and h:2. Thus, all the
length-2 patterns prefixed with <c1> are found, and
they are: <c1g> and <c1h>.

Recursively, all patterns with prefix <c1> can be
partitioned into two subsets: 1) those prefixed with
<c1g>, and 2) those with <c1h>. These subsets can be
mined by constructing respective projected databases
and mining each recursively, i.e., generating length-3
pattern <c1gh>.

b. Find patterns with prefix <ac1>, <bc1>, <abc1>, and
<c2>. This can be done by following the same proce-
dure as finding patterns with prefix <c1>.

4. Compute the confidence of CSRs. The sequence data-
base S is scanned to compute the confidence of the rules.

The algorithm is presented as follows:

Algorithm: ClassPrefix-Span({c1, c2, …, cn}, S)
Input: {c1, c2, …, cn} is the set of classes of interests, S is the
sequence database.
Output: complete set of class sequential rules.
Method:
1. Let csr_set = {};
2. Scan S once, for each class c in {c1, c2, …, cn}

(a) construct projected database S|c backwards;
(b) call Pre-Suf-fixSpan(c, 1, S|c, “backward”).

3. For each csr in csr_set
(a) construct projected database S|csr forwards;
(b) let l = length of csr;
(c) call Pre-Suf-fixSpan(csr, l, S|csr, “forward”).

4. Scan S once, for each csr in csr_set, compute confidence;
5. Return csr_set.

Subroutine Pre-Suf-fixSpan(s, l, S|s, d, csr_set)
Input: s is a class sequential rule; l is the length of s; S|s is the
projected database of s; d is the direction of construction of
projected database: csr_set is for storing the generated csrs.
Method:
1. Scan S|s once, find each frequent item a, such that

(a) a can be appended to the last element of s to form a
class sequential rule if d = “forward”; or

(b) a can be appended to the first element of s to form a
class sequential rule if d = “backward”;

2. For each frequent item a, append to s to form a class
sequential rule s’, and insert s’ to csr_set.

3. For each a’
(a) construct projected database S|s’ backwards if d =

“backward”, forwards if d = “forward”;
(b) call Pre-Suf-fixSpan(s’, l+1, S|s’, d, csr_set).

ClassPrefix-Span is the main algorithm for generating class
sequential rules. In step 2, we first construct the projected
databases for each class backwards, and then use the pro-
jected databases to mine patterns of the format “i1i2 …class”,
that is, the patterns with class as suffix. The growth direction
is backward as we first fix the last item (class item) in the
pattern, then we grow the pattern by appending item in front
of the pattern each time. In step 4, the mined patterns so far
are taken as prefix, and we grow the patterns forward by
appending an item at the end of the pattern each time. The
steps will generate patterns of the form “i1i2…class ilil+1...in”.
In step 4, the database is scanned once again, to count the
coverage of each csr and to calculate the confidence.

Pre-Suf-fixSpan is the function that grows patterns. Each
time it appends one frequent item found from current pro-
jected database to the given pattern to form a new pattern
(step 1 and 2). It then recursively constructs projected data-
base for each frequent item and mines new patterns (step 3).
Due to space limitations, we do not elaborate the process of
construction of projected database, which is similar to that in
(Pei et al, 2004). The major difference is that we can project
the database in two directions.

Mining CSRs for Feature Extraction
In this work, we aim to find CSRs with the following target
classes: <NN> [feature], <JJ> [feature], <VB> [feature] and
<RB> [feature], which allow us to extract various types of
product features (<NN>: nouns, <VB>: verbs, <JJ>: adjec-
tives, and <RB>: adverbs).

Our approach is based on the following observation:
Each sentence segment in Pros and Cons contains at
most one product feature. Sentence segments are sepa-
rated by ‘,’, ‘.’, ‘;’, ‘-‘, ‘&’, ‘and’, and ‘but’.

For example, “Pros” in Figure 1 can be separated into 5
segments.

great photos <photo>
easy to use <use>
good manual <manual>
many options <option>
takes videos <video>

“Cons” in Figure 3 can be separated into 3 segments:
battery usage <battery>
included software could be improved <software>
included 16MB is stingy <16MB>⇒ <memory>

We can see that each segment describes a product feature on
which the reviewer has expressed an opinion (the last two can
be seen as full sentences). The product feature for each
segment is listed within <>. Notice that <16MB> is a value of
feature <memory>, which is an implicit feature as it does not
appear in the sentence segment.

Another important point to note is that a feature may not be
a noun or noun phrase, which is used in (Hu and Liu 2004).
Verbs may be features as well, e.g., “use” in “easy to use”. Of
course, we can also use its corresponding noun as the feature,
e.g., “usage” or simply “use”.

Given a manually labeled training review set, we perform
the following preprocessing before mining CSRs:
1. Perform Part-Of-Speech (POS) tagging and remove digits

and some punctuations: We use the NLProcessor lin-
guistic parser (NLProcessor, 2000) to generate the POS
tag of each word. POS tagging is crucial as it allows us to
generate general language patterns.

We remove digits in sentences, e.g., changing “16MB”
to “MB”. Digits often represent concepts that are too
specific to be used in rule discovery, which aims to gen-
eralize. We use two examples from above to illustrate the
results of this step:
“<NN> Battery <NN> usage”
“<VB> included <NN> MB <VB>is <JJ> stingy”

<NN> indicates a noun, <VB> a verb, and <JJ> an ad-

jective.
2. Replace the actual feature words in a sentence with

[feature]: This replacement is necessary because different
products have different features. The replacement ensures
that we can find general language patterns which can be
used for any product feature. After replacement, the
above two examples become:
“<NN> [feature] <NN> usage”
“<VB> included <NN> [feature] <VB> is <JJ> stingy”

 Note that “MB” is also replaced with [feature] as it indi-
cates an implicit feature.

 It is possible that a feature may contain more than one
word, e.g., “auto mode stinks”, which will be changed to

 “<NN> [feature] <NN> [feature] <VB> stinks”
3. Use n-gram to produce shorter segments from long ones:

For example, “<VB> included <NN> [feature] <VB> is
<JJ> stingy” will generate 2 3-gram segments:
“<JJ> included <NN> [feature] <VB> is”

 “<NN> [feature] <VB> is <JJ> stingy”
We only use 3-grams (3 words with their POS tags) here,
which works well. The reason for using n-gram rather
than full sentences is because most product features can
be found based on local information and POS tagging.
Using long sentences tend to generate a large number of
spurious rules.

4. Perform word stemming: This is performed as in infor-
mation retrieval tasks to reduce a word to its stem.

After the four-step pre-processing and labeling (tagging), the
resulting sentence (3-gram) segments are saved in a file
(called a transaction file) for the generation of class sequen-
tial patterns. In this file, each line contains one processed
(labeled) sentence segment. We then use class sequential
pattern mining to find all language patterns. We use 1% as
the minimum support, but do not set minimum confidence.
As the patterns generated are small in number, further pattern
pruning by setting a minimum confidence may cause some
review segments not covered by any pattern. Experimental
result also indicates that using minimum confidence de-
creases the recall and precision. Two example rules are given
below (we omit supports and confidences).
(a) <NN> x <NN> x → <NN> [feature] <NN> [feature]
(b) <JJ> easy to <VB> x → <JJ> easy to <VB> [feature]

We observe that both POS tags and words may appear in
rules. We also note that when using pattern (b) for feature
extraction, it may cause ambiguity, e.g., is <JJ> the POS tag
for “easy”, or any word in front of “easy”? To tackle this
problem, we do post-processing to reassemble the CSRs into
the following four new rules (we use pattern (b) as example),
(1) <JJ> -1, -1 easy, -1 to, <VB> x→ <JJ> -1, -1 easy, -1 to, <VB>

[feature]
(2) <JJ> easy, -1 to, <VB> x→ <JJ> easy, -1 to, <VB> [feature]
(3) <JJ> -1, -1 easy, -1 to, <VB> -1, -1 x→ <JJ> -1, -1 easy, -1 to,

<VB> -1, -1 [feature]
(4) <JJ> easy, -1 to, <VB> -1, -1 x → <JJ> easy, -1 to, <VB> -1, -1

[feature]

Note that in the new rules, we require each word to have its
corresponding POS tag in front of it. In the case that there is

no POS tag attached with the word, we use –1 to indicate the
“do not care” situation. Similarly, –1 is used when we do not
care about the word but only the word type. As shown in the
above example, each POS tag together with the followed
word/[feature] refers to one word in a sentence (separated by
comma). We count support and confidence for each new rule
by scanning the sequence database again. In this way, we can
have a set of language rules for feature extraction without
ambiguity.
Extraction of Product Features
The resulting language rules are used to identify product
features from new reviews after POS tagging. A few situa-
tions need to be handled.
1. A generated rule does not necessarily require matching a

part of a sentence segment with the same length as the
rule. In other words, we allow ‘gaps’ for pattern match-
ing. For example, rule (right-hand-side only) “<NN>
[feature], <NN> -1” can match the segment “size of
printout”. This is achieved by allowing user to set a value
for the maximum length that a pattern could expand. We
also allow user to set the maximum length of review
segment that a pattern should be applied. These two val-
ues enable a user expert to refine the patterns for better
extracting product features. However, in our experiments
reported below, we did set any of these values, i.e., no
manual involvement.

2. If a sentence segment satisfies multiple rules, we search
for a matching one in the following orders: rules of class
<NN> [feature], then <JJ> [feature], <VB> [feature] and
lastly <RB> [feature]. And for rules of each class, we
select the rule that gives the highest confidence as higher
confidence indicates higher predictive accuracy. The
reason for this ordering is because as we observed that the
noun features appear more frequently than other types.

3. For those sentence segments that no rule applies, we use
nouns or noun phrases produced by NLProcessor as fea-
tures if such nouns or noun phrases exist.

Note that our rule mining method does not apply to cases that
a segment only has a single word, e.g., “heavy” and “big”. In
this case, we treat these single words as features.

Experiment Results
We now evaluate the proposed automatic technique to see
how effective it is in identifying product features from Pros
and Cons in reviews of format (2).

We use the same data as [Liu, Hu and Cheng, 2005) in our
experiment. The data consists of a training set and a testing
set. The training set has Pros and Cons of ten products. The
test set has Pros and Cons of five (different) products. Using
the rules discovered from the training set, we extract features
from the test set.
 We use recall (r) and precision (p) to evaluate the results,

∑
∑

=

== n

i i

n

i i

C

EC
r

1

1 , and
∑
∑

=

== n

i i

n

i i

E

EC
p

1

1 ,

where n is the total number of reviews of a particular product,
ECi is the number of extracted features from review i that are

correct, Ci is the number of actual features in review i, Ei is
the number of extracted features from review i. This evalua-
tion is based on the result of every review as it is crucial to
extract features correctly from every review.

We generate language patterns and product features
separately for Cons and Pros as this produces better results.
Table 4 shows the results. With recall averages at 0.889 for
Pros and 0.809 for Cons, it shows that the proposed extrac-
tion using CSRs is highly effective. Table 5 compares the
proposed technique of using CSRs with the technique of
using association rules in (Liu, Hu and Cheng, 2005). From
the two tables, we can see that the proposed technique gen-
erates comparable results as the association rules. However,
feature extraction using association rules needs a lot of extra
post-processing and manual involvement as association rule
mining is unable to consider the sequence of words, which is
very important for natural language texts. The proposed
feature extraction using sequential pattern mining is thus a
more principled technique.

Pros Cons

recall prec Recall prec
data1 0.862 0.857 0.865 0.794
data2 0.937 0.937 0.824 0.806
data3 0.817 0.817 0.730 0.741
data4 0.919 0.914 0.745 0.708
data5 0.911 0.904 0.883 0.900
Avg. 0.889 0.886 0.809 0.790

 Table 4: Recall and precision results of CSRs
Pros Cons

recall Prec. recall Prec.
data1 0.922 0.876 0.850 0.798
data2 0.894 0.902 0.860 0.833
data3 0.825 0.825 0.846 0.769
data4 0.942 0.922 0.681 0.657
data5 0.930 0.923 0.881 0.897
Avg. 0.902 0.889 0.824 0.791

Table 5: Recall and precision results of association rules

Conclusions and Future Work
Analyzing reviews on the Web has many applications. It is
not only important for individual consumers, but also im-
portant for product manufacturers. In this paper, we focused
on one type of product reviews, i.e., Pros and Cons expressed
as short phrases or sentence segments. Our objective was to
extract opinion (product) features that have been commented
on by consumers. As the method in (Liu, Hu and Cheng,
2005) is very ad hoc, we proposed a more appropriate mining
method called class sequential rule mining to perform the
task which captures the sequential relationships of words in
sentences. In our future works, we will further improve the
results and also study how to use the proposed method to
analyze reviews of full sentences.

References
Agrawal, R., Rajagopalan, S., Srikant, R., Xu, Y. Mining newsgroups using

networks arising from social behavior. WWW’03.
Bourigault, D. Lexter: A terminology extraction software for knowledge

acquisition from texts. KAW’95, 1995.
Bunescu, R., and Mooney, R. Collective Information Extraction with Rela-

tional Markov Networks. ACL-2004, 2004.
Daille, B. Study and Implementation of Combined Techniques for Auto-

matic Extraction of Terminology. The Balancing Act: Combining Sym-
bolic and Statistical Approaches to Language. MIT Press, 1996.

Das, S. and Chen, M., Yahoo! for Amazon: Extracting market sentiment
from stock message boards. APFA’01, 2001.

Dave, K., Lawrence, S., and Pennock, D. Mining the Peanut Gallery:
Opinion Extraction and Semantic Classification of Product Reviews.
WWW’03, 2003.

FASTR. http://www.limsi.fr/Individu/jacquemi/FASTR/
Fellbaum, C. WordNet: an Electronic Lexical Database, MIT Press, 1998.
Freitag, D and McCallum, A. Information extraction with HMM structures

learned by stochastic optimization. AAAI-00, 2000.
Hatzivassiloglou, V. and Wiebe, J. Effects of adjective orientation and

gradability on sentence subjectivity. COLING’00, 2000.
Hearst, M, Direction-based Text Interpretation as an Information Access

Refinement. In P. Jacobs, editor, Text-Based Intelligent Systems. Law-
rence Erlbaum Associates, 1992.

Hu, M and Liu, B. "Mining and summarizing customer reviews". KDD-04,
2004.

Jacquemin, C., and Bourigault, D. Term extraction and automatic indexing.
In R. Mitkov, editor, Handbook of Computational Linguistics. Oxford
University Press, 2001.

Justeson, J. & Katz, S. Technical Terminology: some linguistic properties
and an algorithm for identification in text. Natural Language Engineering
1(1):9-27, 1995.

Liu, B., Hu, M. and Cheng, J. 2005. Opinion Observer: Analyzing and
comparing opinions on the Web. WWW-2005.

Morinaga, S., Yamanishi, K., Tateishi, K, and Fukushima, T. 2002. Mining
Product Reputations on the Web. KDD’02, 2002.

Nasukawa, T. & Yi, J. 2003. Sentiment analysis: Capturing favorability
using natural language processing. Proceedings of the 2nd Intl Conf. on
Knowledge Capture (K-CAP 2003).

Nigam, K. and Hurst, M. 2004. Towards a robust metric of opinion. AAAI
Spring Symp.on Exploring Attitude and Affect in Text.

NLProcessor, 2000. http://www.infogistics.com/textanalysis.html
Pang, B., Lee, L., and Vaithyanathan, S. Thumbs up? Sentiment classifica-

tion using machine learning techniques. EMNLP-02.
Popescu, A-M and Etzioni. O. 2005. “"Extracting Product Features and

Opinions from Reviews. EMNLP-05.
Pei, J. Han, J., Mortazavi-Asl, B., Wang, J., Pinto, H., Chen, Q., Dayal, U.,

and Hsu, M.-C. Mining Sequential Patterns by Pattern-Growth: The Pre-
fixSpan Approach. IEEE Transactions on Knowledge and Data Engi-
neering, 16(10), 2004.

Riloff, E and Wiebe, J. 2003. Learning extraction patterns for subjective
expressions. EMNLP-03. .

Tong, R. 2001. An Operational System for Detecting and Tracking Opinions
in on-line discussion. SIGIR 2001 Workshop on Operational Text Clas-
sification, 2001.

Turney, P. Thumbs Up or Thumbs Down? semantic orientation applied to
unsupervised classification of reviews. ACL’2002.

Wiebe, J., Bruce, R., O’Hara, T. Development and use of a gold standard
data set for subjectivity classifications. ACL’99, 1999.

Wilson, T, Wiebe, J, & Hwa, R. Just how mad are you? Finding strong and
weak opinion clauses. AAAI-04, 2004.

Yu, H and Hatzivassiloglou, V. Towards answering opinion questions:
Separating facts from opinions and identifying the polarity of opinion
sentences. EMNLP-03, 2003.

