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Abstract

This paper describes a spatial language understanding system
based on a lexicon of words defined in terms ofspatial rou-
tines. A spatial routine is a script composed from a set of
primitive operations on sensor data, analogous to Ullman’s
visual routines. We hypothesize that a set of primitives that
underlie spatial language could be used to succinctly express
the meaning of spatial terms in a way that can be used to inter-
pret natural language commands. This hypothesis is tested by
using spatial routines to build a natural language interface to
a real-time strategy game, in which a player controls an army
of units in a battle. Spatial routines are used as a top down
control mechanism for the system, providing a mapping from
natural language commands to system behavior. Although
the current implementation has significant limitations as re-
vealed in an initial evaluation, we believe that the concept
of spatial routines holds promise as a way to ground spatial
language semantics in terms of embodied sensory-motor in-
teraction.

Introduction

Spatial competence is a central aspect of human intelligence,
and a crucial component of any system that needs to intelli-
gently move itself or objects in the world. Spatial language
is a window to spatial cognition: humans use spatial lan-
guage to describe spatial situations, to refer to objects, and
to request other humans to take actions. We are interested in
developing computational models of the structures and pro-
cesses that underlie spatial language interpretation.

This paper describes a system that tries to obey natural lan-
guage commands about unit movement in a real-time strat-
egy (RTS) game. In the RTS game used in this work, the
player uses a mouse and keyboard interface to control an
army in a battle against a computer opponent. When speak-
ing to another human in order to control units in an RTS
game, a human commander uses quite complicated language
including conditional expressions, negatives, and statements
about higher level strategy. In order to simplify the domain,
we focused on simple commands that specified a set of units
to move and a target location such as “have everybody go

below the lake”. Our system grounds the words in its vo-
cabulary in terms of a lexicon of words defined in terms of
spatial routines, analogous to the visual routines described
by Ullman (1983). A spatial routine is a script composed
of a set of primitive operations on data extracted from the
RTS game state. The system is evaluated using a corpus col-
lected by recording the commands that one human issued
to another who was playing the game using a keyboard and
mouse interface.

The system presented in this paper is controlled by a top-
down architecture: natural language commands are con-
verted to actions in the game via a lexicon of words defined
in terms of scripts of primitive operations. This architecture
makes the mapping between language and action straight-
forward, but makes it harder to express actions the system
could take on its own.

Related Work

The system presented here uses a lexicon of words de-
fined in terms of a set of primitive spatial operations to
obey natural language commands. Wierzbicka (1996) de-
fines a set of linguistic semantic primitives, searching for
a set of words that have lexical forms in every language,
and which can be used to define any word in any language.
Our work moves below the linguistic level of meaning, re-
sulting in definitions that can be used to obey natural lan-
guage commands. The field of cognitive semantics and
others have described sets of sub-linguistic primitives that
can be used to encode the meaning of words. (Talmy 2005;
Jackendoff 1985) Their approaches operate at the level of
abstract schemas whereas ours operates at a more concrete
level of sensory-motor programs.

Ullman (1983) suggests a set of primitive operations that
combine to form visual routines which process images to
perform visual tasks. His goal is to find a flexible frame-
work for visual processing that could be used to explain
the wide variety of human visual competencies. The prim-
itives operate on an image bitmap and points within the
map. For example, theindexingprimitive finds locations



with particular features such as color or line orientation;hu-
mans do something analogous when they find odd-colored
objects in a group of other objects. Thecoloring opera-
tion spreads activation in the base representation, stopping
at boundaries, and can be used to identify whether a point
is inside a bounded region. The compositional nature of
Ullman’s primitives suggests applying a set of primitives in
order to define the meaning of linguistic terms. Since lan-
guage is compositional, defining words in a compositional
substrate yields a mechanism for combining word meanings
in phrases and sentences.

Rao (1998) presents the “Reverse Graphics” system which
uses a visual routine-based architecture to process black and
white images. This builds on Ullman’s ideas by refining the
set of primitives and adds a concrete implementation. Rao
focuses on using a set of primitives to develop algorithms
that process and label video data. In contrast, the current
work describes a system that understands natural language
commands in a game environment.

The mobile robot community has created systems that can
understand natural language commands. Much of this work
focuses on spatial language to control the robot’s position
and behavior, or to enable it to answer questions about what
it senses. In general, previous work in this area has focused
on developing various command sets for mobile robots and
robotic wheelchairs, without directly addressing aspectsof
language that are context sensitive. (See (Skubicet al. 2004;
Pires & Nunes 2002; Yanco 1998; Gribbleet al. 1998)). In
our previous work, we created a spatial-routines based sys-
tem that obeyed natural language movement commands by
using the environment to plan a context-sensitive trajectory
based on available pathways. (Tellex & Roy 2006) For ex-
ample, if the robot was in an empty room with a doorway
off to its left, it would go left through the doorway, while if
it was in a hallway approaching an intersection, it would go
forward and to the left.

Many have collected corpuses in order to drive the imple-
mentation of systems that obey natural language commands
in a simulated or real-world environment. (See (MacMa-
hon, Stankiewicz, & Kuipers 2006; Bugmannet al. 2004;
Gorniak & Roy 2004).) Bugmannet al.(2004) and MacMa-
hon, Stankiewicz, & Kuipers (2006) do not describe an
end-to-end evaluation on a held out test set. Both systems
mapped natural language utterances to a static set of mo-
tor commands. Spatial routines, in contrast, define words in
terms of operations on sensor data, which then compose to
create a plan for motor action. Gorniak & Roy (2004) cre-
ated a system that uses natural language instructions to select
objects in a scene. In contrast to the current work, their sys-
tem only supports selecting objects in a simple environment,
not moving objects in a richer domain.

Figure 1: The architecture of the language understanding
system.

System Architecture

The spatial language understanding system described in this
work consists of a parser created by Gorniak & Roy (2006),
using a custom grammar. The parser finds the largest gram-
matical island in the input sentence, and sends the output
the spatial routines system for evaluation against the current
game state as reported by the RTS game engine. The spatial
routine system then sends the results of that evaluation to
the RTS game engine in the form of a set of units and a lo-
cation to which they should be moved, and the game engine
executes the command. The system architecture is shown in
Figure 1.

For example, if the user says “Move the flamethrowers on
top to the left of the marines,” the parser creates the follow-
ing representation:

go(on(flamethrowers(),top()),
of(left(),marines()))

This expression is evaluated by the spatial routines system,
and the result is a set of units and a goal point to which
they should move. These are converted to commands for the
RTS game engine to execute. Because words in the lexicon
are defined in terms of scripts that operate on information
from the game state, commands can be obeyed in a context
sensitive way, and the same command can lead to different
behavior in different situations.

Words in the system’s lexicon are defined as scripts of prim-
itive operations that run on data extracted from the game
state at the time the command was issued. Game state used
by the system includes unit locations, map visibility, unit
ownership, and terrain information. The primitives are de-
fined as functions that take grids, points, or numbers as ar-
guments. Grids can be either numeric grids, masks, which
take boolean values, or regions, which are masks with a sin-



gle continuous area selected. A subset of the primitive op-
erations is shown in Figure 2, and the complete list can be
found in Tellex (2006).

Lexicon of Words Defined as Spatial Routines

The system uses a lexicon of words defined in terms of these
primitives in order to obey natural language commands.
Each entry in the lexicon consists of a symbol and an as-
sociated script composed from the set of primitives. The no-
tationSubscript(argnames) is used to specify subscripts,
which is like a lambda expression, a procedure that takes
the specified arguments, and when called returns a result.
Some spatial routines in the lexicon return a subscript as
their result. Sample entries in the lexicon are shown in Fig-
ure 3; detailed information about the lexicon can be found
in Tellex (2006).

Corpus Collection

Normally a person who plays an RTS game discovers the
game state through the game interface, makes strategic deci-
sions based on this information, and then implements those
decisions using a keyboard and mouse to control their units.
In order to collect data to design and evaluate our system,
these tasks were split between two people, who used lan-
guage to coordinate their actions. One participant, thecom-
mander, watched the game unfold and gave verbal instruc-
tions to the interpreter, telling him how to play the game.
The other participant, theinterpreter, followed those in-
structions using the keyboard and mouse interface.

Using this paradigm, data was collected from fourteen
games, averaging 6 minutes and 30 commands each. Each
game had a different commander, but the same person served
as interpreter across all games in order to ensure a standard-
ized interpretation of the commands that participants issued.
Before recording any sessions for the corpus, the interpreter
played through the game on his own, and recorded a test
session as a commander.

The game runs on an RTS game engine called Stratagus.1

For our purposes, a custom game was developed based on
one of the games written using Stratagus, Battle of Sur-
vival. 2 The game designed for this evaluation has three
types of units: marines, assassins and flamethrowers, bal-
anced as in the game “Rock Paper Scissors”: marines eas-
ily defeated assassins and were defeated by flamethrowers;
assassins easily defeated flamethrowers but lost to marines,
and flamethrowers beat marines but lost to assassins. Players
controlled 30 units total: 10 of each unit type, and were told
how the units were balanced. In addition, each unit in the
game was labeled with one of the words “rock”, “paper” or

1http://stratagus.sourceforge.net
2http://bos.eul.org

Mask Convex hull Center of mass

ConvexHull(mask) Returns the convex hull of a mask. A
visualization of the primitive’s operation is shown above.

CenterOfMass(mask) Returns the center of mass of a
mask, computed by averaging the points in the mask. A
visualization of the primitive’s operation is shown above.

ColorRegion(region, grid, function(grid, point)) Calls a
function on each point in a region. Writes the output of
the function to an output grid.

TraceLine(start point, direction, function(grid, point))
Calls a function on each point in a ray. Writes the output
of the function to an output grid.

UnmaskCircle() Returns a region unmasked around a spec-
ified point and a specified radius.

Max/Min(grid) Returns the point where a grid takes on its
maximum/minimum value.

Distance(p1, p2)Computes the distance between two
points.

Divide(grid1, grid2) Divides one occupancy grid by an-
other.

MaskUnion/MaskIntersect/InvertMask(mask1, mask2)
Functions to manipulate masks.

IndexMask Returns a list of regions, one for each con-
nected component in the input mask.

ClosestRegion(listOfRegions, point)Returns the region
closest to a point in a list.

ScoreRegion(listOfRegions)Sorts regions according to a
function.

Direction(grid, point) Returns the height of each point in
a direction.

Angle(point1, point2) Returns the angle between two
points.

AverageDirection(path grid) Finds the average direction
of a path grid.

Figure 2: A subset of the primitive operations used to define
words in the system’s lexicon, and a visualization of their
operation.



go (arg1, arg2)
if arg2 is passed
if arg1 is a Numeric Grid
goal = arg1, subject = arg2

if arg2 is a Numeric Grid
goal = arg2, subject = arg2

elsegoal = arg1, subject = selectedunits

# Now there are variables forsubject andgoal.
subject = UnmaskIntersect(subject, myunits)
#(because it is only possible to move units the player
controls.)
subject com = CenterOfMass(subject)

if goal is a function
goal point = Max(goal(subject))

if goal is a Grid
goal point =
closest point(max region(goal), subject)

if goal is a Point
goal point = goal

Select(subject)

returngoal point

direction(direction, target) This is used to define north,
south, left, right, top, bottom, etc. The definition for each
of these words in the lexicon passes the vector
corresponding to that word to this function.

grid = Assign each point the value of the direction
function. (Uses ColorRegion primitive)
if target is not passed
returngrid

if target is GridMask (e.g., “The north marines”)
Find all regions in the mask.
Compute the center of mass of each region.
Score each region based on the grid’s value at the
region’s center of mass.
Return the highest scoring region.

towards(destination)
script = Subscript(subject)

if destination is a Grid
destpoint = Max(destination)

else
regions = IndexMask(destination) Find all
regions in the mask.
region = ClosestRegion(regions)
destpoint = CenterOfMass(region)

subjectpt = CenterOfMass(subject)
angle = Angle(subjectpt, destpoint)
returndirection(angle)

returnscript

Figure 3: Pseudocode for a subset of the lexicon used in the
system.

“scissors.” Participants played against an enemy army con-
sisting of the same units. The enemy was controlled by a
simple algorithm that waited for an attack, and then moved
nearby units to defend the units under fire. The object of the
game was to destroy all enemy units, and the game ended as
soon as one of the armies was completely destroyed.

When playing the game, commanders watched a screen
showing the game view and mouse movements of the hu-
man interpreter. They were asked not to touch the keyboard
and mouse at all. Instead they spoke through a microphone
to the interpreter, who was playing the game using a conven-
tional keyboard and mouse interface in another room. The
interpreter could not talk back to the commander. Instead,
he communicated only via the game interface.

The speech corpus was segmented using a pause-structure
based segmenter, then transcribed with an internally de-
veloped speech transcription tool. The speech segmenter
created a speech event marking each place that it detected
speech within the audio stream. When transcribing the
speech, we sometimes modified the automatically created
speech events, splitting and merging them so that each log-
ical command was contained in its own event. Testing ses-
sions were not transcribed until all development was com-
plete. Detailed statistics about the corpus can be found in
Tellex (2006).

Evaluation Procedure

A simple algorithm was developed to provide a baseline for
system performance. We created an algorithm that takes
fixed action based on spotting certain keywords in the com-
mand. After parsing the command, the semantic represen-
tation is searched for the strings “north”, “south”, “east”,
“west”, and other direction words such as “left”, “right”,
“top”, and “bottom”. A direction, represented as an angle,
is generated from a lookup table based on the presence of
one of these words. The units to be moved are the currently
selected units, if any are selected. If no units are selected, it
moves all units. It moves the units half a screen length in the
specified direction.

The evaluator rated the performance of the baseline and spa-
tial routines systems for commands in the testing portion of
the corpus. For each command, the evaluator saw the com-
mand text and the state of the game when the command was
issued. Then he watched as the spatial routine or a baseline
system tried to obey it. Commands were shown in random
order, and each command was shown twice, once for the
spatial routines system and once for the baseline. Both the
baseline and routine systems selected the units they planned
to move, and moved the view port to center on those units.
Then the units were moved towards the goal point. After the
units started moving, the view port was moved again to cen-
ter on the goal point. The evaluator rated the performance
on a Likert scale from 1-7, with one labeled as “Less Ac-



Training Testing Total
Keyword 66 16 82
Parser error 87 37 124
Routine error 18 23 41
Analyzed Commands 104 75 179
All Commands 275 151 426

Table 1: Shows the number of commands rejected from the
evaluation by each rule, and the number of commands used
in the evaluation.

ceptable” and seven labeled as “More Acceptable.”

Corpus Filtering

Because many of the commands in the corpus were quite
complex, some of the commands were excluded from the
evaluation using automatic heuristics. For example, many
interpreters asked the commander questions or issued con-
ditional commands. Such commands are out of the scope of
the problems the system is trying to solve, although it would
be worthwhile to expand that scope in future work. Other
commands used vocabulary not yet encoded in the system,
but that could easily be added. Excluding these commands
focuses the evaluation on how well the system works on vo-
cabulary that was encoded. The corpus was filtered auto-
matically using three rules. Table 1 shows the number of
commands filtered by each rule. The first rule excluded
a command if it contained the strings “if”, “not”, “don’t”,
“follow”, and “?”. The second rule excluded commands that
failed to parse. In practice this often acted as a vocabulary
based filter, since the parser often failed to parse commands
with unknown words. Finally if the command was parsable,
the routines system attempted to obey it. If an error occurred
during this process, that command was not included in the
evaluation. Sometimes this happened when one of the words
in the lexicon was called with incorrect argument. In other
cases the game state made the command impossible to obey
because the command did not make sense. E.g., the com-
mand “Move assassins to the right” was rejected from the
evaluation because at the time this command was issued, all
the assassins had been killed, so the routine system failed.
Samples of commands excluded by each heuristic can be
found in Tellex (2006). Only 42% of the commands in the
corpus were included in the evaluation, mostly from parser
and routine errors. This many were excluded due to the com-
plexity of the language collected in the corpus and the fact
that the lexicon of words was coded manually. A system
that learns commands from training data could be more ro-
bust and could increase coverage of the data set.

Results and Discussion

The spatial routines algorithm performed only slightly better
than the baseline on the training and testing data sets. The
average ratings and significance values are shown in Table 2.

Training Testing
Baseline Routine Baseline Routine

Mean 3.75 4.75 3.86 4.32
Std. Dev. 2.15 1.91 2.27 2.25
# Samples 104 104 75 75
Paired One-Tail P = 0.00002 P = 0.07
T-Test (T = −4.14) (T = −1.49)
T-Test (df = 65534) (df = 65534)

Table 2: Average ratings for the baseline and routine sys-
tems, on a scale from 1-7.

Likert Ratings From Baseline and Routine Systems
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Figure 4: A scatter plot showing the annotator’s ratings of
each command in the test set. The area of the circle at
each point is proportional to the number of commands at
that point.

A one factor ANOVA among all four columns was signifi-
cant atP = 0.004 (F = 4.53, df = 3).

Figure 4 shows commands from the test set, organized by
the performance of the routine and baseline systems. Al-
though the systems performed similarly for many commands
(shown by the correlation between the baseline and routine
ratings), there was a set of commands for which perfor-
mance of the two systems differed. Table 3 shows a subset of
these commands, where the difference in performance by the
two systems was large. The commands that worked better on
the baseline system than the routines system are all because
of some kind of failure in the routine system, either parser
error, caused by the presence of out of vocabulary words
or words combined in unanticipated ways. The routine sys-
tem worked well compared to the baseline on commands
whose syntactic structure combined to form the meaning of
the command, and where the parser was able to successfully
extract that structure and send it to the routine system.



High for Baseline, Low for Spatial Routines
Likert Score Command

Baseline Routine
7 1 and go around to the left this big group

of trees
7 1 and to the right to the green patch
6 1 have the marines attack move towards the

right
5 1 and four flamethrowers attack these

enemies
7 3 go back around the trees to the right

High for Spatial Routines, Low for Baseline
Likert Score Command

Baseline Routine
1 7 and since the enemy is here let’s bring

the flamethrowers this way also
1 7 take four assassins
1 7 back to the main group of guys
1 7 get four marines
2 7 move four of the flamethrowers to the left
2 7 have everybody go below the lake

Table 3: Commands where the difference between the base-
line system’s performance and the spatial routine system’s
performance was large.

Future Work

Although the spatial routines system successfully inter-
preted a range of spatial commands, as rated by a human, it
only slightly exceeded the performance of a baseline system.
The language collected in the corpus rarely contained deeply
nested compositional structures such as “move the marines
on top below the lake.” where we expect spatial routines to
perform much better than a baseline system. Instead it con-
sisted of rich dialog expressing goals and conditionals. Per-
haps by taking into account the context of the goal structure
and history in addition to the game state would increase sys-
tem performance. In addition, manually programming the
lexicon led to it being too brittle, failing in unexpected situ-
ations and failing to adequately cover even the training set.
This problem could be alleviated by exploring algorithms
that automatically learn to create the lexicon of words based
on training data and game state.

The spatial language corpus that we collected using video
games provided a very difficult modeling challenge. The
language interpretation system successfully interpreteda
significant portion of the corpus despite many limitations of
the current implementation. We continue to believe that spa-
tial routines are a compelling means of capturing the com-
plex semantics of spatial language although much further
effort will be required to translate this concept into robust
implementations.
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