Formalising Phylogenetic Experiments: Ontologies and Logical Inference

Ross D. King & Larisa N. Soldatova
Department of Computer Science,
University of Wales, Aberystwyth, UK.
[rdk, lss]@aber.ac.uk

Abstract
The ontology of scientific experiments EXPO formalises the
generic concepts of experimental design, methodology, and
results representation. We describe an application of EXPO
to describe phylogenetic experiments, focusing on a case
study involving Solenodons. We explain how the details of
the experiment were formalised using EXPO. We argue that
abductive inference is the basis of evolutionary
phylogenetics, that inductive inference is necessary to
generalise phylogenetic conclusions from sequences to
genomes, and that deductive inference is also often required.
This is novel because phylogenetic experiments are
generally thought to be based on purely probabilistic
methods. The recognition that different forms of logical
inferences are taking place may enable novel techniques
from logic to be applied.

1. Introduction
The central interests of the Computational Biology group
of the University of Wales, Aberystwyth are in formalising
and automating scientific experiments [Soldatova & King,
2005; King et al., 2004]. We have developed a generic
ontology of experiments, EXPO, was to support our
research [Soldatova & King, 2006]. EXPO links a relevant
subset of the upper ontology SUMO with subject-specific
ontologies of experiments by formalising the generic
concepts of experimental design, methodology, and results
representation. EXPO is expressed in the W3C standard
ontology language OWL-DL.
Along with our interests in automating and formalizing
science, we are also interested in both the application of
phylogenetic methods to biological problems and in
developing new phylogenetic methods. As it is important
that work on formalising science is done in contact with
actual science, it has been natural for us to use phylogenetics as a test-bed.
Phylogenetics is the reconstruction of the evolutionary
relationships (that is, the phylogeny) of a group of taxa,
such as species [Nature]. Work in phylogenetics used to
be generally done based on phenotypic features of
organisms considered to be evolutionary stable. It is now
generally done using genetic techniques; except when this
is impossible, e.g. in fossils. Many important phylogenetic
questions remain unanswered, e.g. the relationship between
the main animal phyla [Valentine, 2004].
In this paper we argue that formalising the details of
phylogenetic experiments makes their results more
explicit, the knowledge generated more reusable, and the
experiments more repeatable. We also argue that teasing
out the different forms of logical inference involved in
phylogenetic experiments opens up new methodological
opportunities missed by the assumption that the existing
probabilistic methods are sufficient.

2. A case study: Solenodons
In Soldatova & King (2006) we used EXPO to annotate an
experiment investigating the phylogenetic status of the
mammalian species Solenodon cubanus and Solenodon
paradoxus. Solenodons are endangered insectivores that
inhabit the forests of Hispaniola and Cuba. Their
phylogenetic relationship with other mammals has long
been a matter of controversy [Roca, et al. 2004]. Here we
briefly sketch the use of the ontology EXPO to annotate
this phylogenetic experiment. This work differs from
(Soldatova & King, 2006) in emphasizing the various
forms of logical inference that are implicitly involved in
phylogenetic experiments.

2.1. EXPO
A small part of the EXPO annotation of the Solenodon
experiment is given in Figure 1.

One advantage of the EXPO formalism is that it forces the
explicit expression of research hypotheses, negative
hypotheses, alternative hypotheses and all the available
evidences to support or reject them. EXPO can also be
used to make explicit the argumentation used to make
research assumptions and conclusions. In addition EXPO
serves as a basis for formalising background knowledge
about a research domain - in cases where it has not
previously been formalised in an ontology. Once
information about an experiment has been formalised
inference methods can be used to reason about the validity
of conclusions, and EXPO helps to define predicates and
rules required for such reasoning.
Below we discuss how different types of logic inference
are used in phylogenetics.
Discovery of the phylogeny of *Solenodon paradoxus* and *Solenodon cubanus*

Motivation:
It is important to produce more experiment data and analyse the phylogeny of *Solenodon paradoxus* and *Solenodon cubanus* because of the threat of their extinction.

Problem Analysis:
The phylogeny of the Solenodons has long been ambiguous.

Null Hypothesis H0:

"Some have suggested a close relationship to soricids (shrews) but not to talpids"

Research Method:

Object of Experiment: Living and dead specimens of the species *Solenodon paradoxus* and *Solenodon cubanus*.

Experimental Equipment:
- Qiagen column–based DNA cleanup kit
- PCR primers supplier “high-fidelity Taq–Gold (ABI)” sequences
- Microcoson-50 for PCR product purification
- ABI 3700 automated sequencer

Experiment Conclusion C1:

There existed a mammal that is the ancestor of: *Solenodons*, *Soricoidea*, *Talpoidea*, *Erinaceidea*, and which is not the ancestor of any other mammal.

Experiment Conclusion C5:

"our results lend support to an alternative proposal that Cuban solenodons be classified as a distinct genus *Atopagale.*"
2.2. Abduction

We argue that abductive inference is central to modern evolutionary based phylogenetics. This can be seen in evolutionary definition of a taxon (grouping of organisms): “that all members of a taxon are descendants of the nearest common ancestor (monophly sensu stricto)” [Mayer, 1982]. We express this in logic as:

∀A . A ∈ taxon1 ⇒ (∃Ancestor . ∃B ∈ taxon1 ∧ ancestor(Ancestor, A) ∧ ¬ancestor(Ancestor, B)).

This definition is based on the abductive inference of the existence of an ancestor organism not shared by any other taxon. An applied example of this from the Solenodon work is:

So, Sh, T, E, An, X ∈ mammalia

∀So . ∀Sh . ∀T . ∀E . ∀X . solenodon(So) ∧ soricoidea(Sh) ∧ talpoidea(T) ∧ erinaceidea(E) ∧ ¬solenodon(X) ∧ ¬soricoidea(X) ∧ ¬talpoidea(X) ∧ ¬erinaceidea(X) ∧ ancestor(Ancestor, So) ∧ ancestor(Ancestor, Sh) ∧ ancestor(Ancestor, T) ∧ ancestor(Ancestor, E) ∧ ¬ancestor(Ancestor, X)

Which states that there existed a mammal that was the ancestor of: Solenodons, Soricoidea, Talpoidea, Erinaceidea, and which is not the ancestor of any other mammal (see Fig 1).

N.B. the science of Cladistics [Valentine, 2004] predates the rise of molecular phylogenetics and is also based on the abduction of ancestral organisms. Cladistics was used in the Solenodon paper to analyse fossil evidence [Roca, et al. 2004]

2.3. Induction

We also argue that Phylogenetics requires inductive inferences. This is because general conclusions about the relationship of organism are generally based on one (or at most a few) sequences from each organism - not from the full genome. For example in a distance based phylogenetic method it is inductively inferred that:

\[\text{distance(seq_a_species_s1, seq_a_species_s2) = distance(species_s1, species_s2)} \]

In the Solenodon work we studied, the phylogenetic relationships between the two Solenodon species and other mammals were inductively inferred by use a small set of mitochondrial and ribosomal gene sequences.

Inductive inference is also important in phylogenetics because the older, Linnaean non-evolutionary based, definition of a taxon is inductive. This definition is based on similarity: “that the members of each taxon are each other’s nearest ‘relatives’ (that is, most similar to each other)” [Mayer, 1982]. This definition leads to use of clustering (“classification” in statistics, “unsupervised learning” in machine learning) methods to define taxa. Given an induced cluster the most natural way to define a taxon is to define a set of features that must be present in an organism to place it in a specified taxon. This is what was traditionally done for higher level taxa. Interestingly, however, it is not what was done for the taxa species and genera. For these a cluster was defined by similarity to a “type specimen”. This is an example organism (usually preserved in a museum) that is asserted to be of the specified taxon. Once such type specimens exist, and there is some way to measure organism similarity, then the correct taxon for an organism can be computed. The use of type specimens has the feel of case based reasoning.

Use of a type specimen and a similarity based measure of a taxon can be expressed as:

\[A ∈ taxon2 ⇒ (∃Type . ∀B . A ∈ taxon2 ∧ B ∈ taxon2 ∧ (distance(A, Type) < distance(A, B))) \]

Over and above the above uses of induction, the central induction in evolutionary science is that evolution took place: “that the Linnaean hierarchy of taxa is consistent with the inferred phylogeny” [Mayer, 1982]. Therefore, the evolutionary definition of taxon1 is identical to the clustering one.

induction(taxon1 == taxon2)

2.4. Deductions

Phylogenetic experiments may also involve deductive inference. In our annotation of the Solenodon experiment we interpreted the text to be using the following definition of how long two taxa have to have diverged to be separate families:

\[\text{diverged(X, Y, Date) ∧ Date > 20000000 ∧ Date ≤ 30000000 ⇒ different_family(X, Y)} \]

It also inferred inductively the fact:

\[\text{diverged(solonodon_cubanus, solonodon_paradoxus, 25000000)} \]

The authors did not however deductively infer:

\[\text{different_family(solonodon_cubanus, solonodon_paradoxus)} \]

They instead inferred:

\[\text{different_genus(solonodon_cubanus, solonodon_paradoxus)} \]

This illustrates that one advantage of formalisation - the identification of errors
3. Discussion

One aspect of the Solenodon paper that could not be represented using traditional logic is the conclusion described above that:

different_genus(solonodon_cubanus, solonodon_paradoxus).

The paper concludes that Cuban Solenodons be classified in a new genus Atopagale. In the standard Linnaean classification Cuban Solenodons belong to the species Solenodon cubanus i.e. are in the genus Solenodon. The conclusions of the paper are that a new genus Atopagale should be created, that the Cuban Solenodon species be renamed Atopagale cubanus, that Atopagale cubanus be placed in Atopagale, and that the species Solenodon cubanus be removed from the genus Solenodon. These inferences require non-monotonic logic.

A probabilist might argue that the only form of inference that is required in phylogenetic experiments is probabilistic inference. This argument certainly has some merit and is the traditional view. However, we argue that very generality of probabilistic inference obscures the different aspects of the inferences that are taking place. In addition, recognition that abductive, inductive, and deductive inferences are taking place enables novel techniques from logic to be applied. We also argue that the logical view also meshes much more cleanly with the use of ontologies, and that ontologies are becoming increasingly important in phylogenetics. Finally, the convergence of description logics with probabilities is one possible approach that may enable the best of both logical and probabilistic reasoning [Łukasiewicz, 2007].

References

Nature :
http://www.nature.com/nrg/journal/v4/n2/glossary/nrg999_glossary.html

