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Abstract

The prospect of teaching a computer how to perform a task
through demonstration rather than programming has
tremendous appeal. However, learning purely from a
demonstration trace is a difficult challenge. One way to ease
the learning problem is to supplement the demonstration
with information provided by asking questions of the
demonstrator. This paper presents a case study that explores
how to instantiate a question asking framework to select
questions for a particular type of learner used within
learning by demonstration systems, namely a lexicographic
preference learner.  Experimental results show that,
generally speaking, judicious question asking can improve
learning performance. However, the study makes clear the
importance of understanding the value of different types of
information to learning in different contexts.

Introduction

There has been a resurgence of interest in the field of
learning by demonstration in the last few years, motivated
by the desire to make it easier for nonprogrammers to teach
software systems tasks that are mundane and repetitive
(Allen et al., 2007; Gervasio et al., 2008; Little et al.,
2007). Given recent technical progress in the area, research
has shifted from an initial focus on learning small, self-
contained procedures for simple tasks to the harder
problem of learning coherent bodies of problem-solving
knowledge that can be reused on different but similar tasks.

For example, the POIROT project seeks to use learning
by demonstration technology to develop a repertoire of
reusable problem-solving knowledge to support medical
evacuation planning (Burstein et al., 2008). A typical
problem in this domain requires the scheduling of transport
for patients at different locations to appropriate treatment
facilities, taking into account criteria such as the type and
severity of injury, treatment times, facility capabilities, and
transit times. Learning problem-solving knowledge of this
scope requires not only the trace generalization
mechanisms pioneered in programming by demonstration
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research, but additional technologies for learning
preferences over choices in the domain, conditional
branches, and abstraction structures such as methods and
loops.

The technical challenges inherent to learning procedural
knowledge for rich problem spaces are substantial. A single
demonstration sequence—or even a few of them—will
generally lack the breadth to define the general case. A
human demonstrator may be willing to provide a small
number of examples, but generally will not provide enough
for unambiguous learning of the intended generalized
problem-solving knowledge. In addition, the demonstrator
may make mistakes or may become distracted and include
irrelevant or unnecessary steps in the demonstration, thus
further complicating the learning process.

For these reasons, we believe that a successful learning
by demonstration capability will need additional
information from the demonstrator to simplify the learning
problem. For example, the PLOW system relies on a
running narrative by the demonstrator to focus the learning
process (Allen et al., 2007). This type of mixed-initiative
interaction is common in other subfields of Al that have
sought to build technologies for real-world tasks (Bresina
et al., 2005; Myers et al., 2003; Tecuci et al., 2007).

In prior work, we defined a framework called QUAIL
(Question Asking to Inform Learning) for asking questions
of the demonstrator as a way of supplementing the
information provided by a demonstration trace (Gervasio
and Myers, 2008). This framework is being developed in
the context of the POIROT project, but applies generally to
a range of learning by demonstration frameworks. That
prior work defined a catalog of questions designed to
inform the learning by demonstration process, covering
areas such as the function and causality of elements in the
demonstration trace, abstraction, alternatives and
justifications, limitations on learned knowledge, and the
process of learning. The work also defined a metalevel
capability for managing question asking that reasons about
gaps in the learned knowledge to identify appropriate
questions. The metareasoning takes a limited rationality
perspective in selecting questions to pose to the
demonstrator, trading off the anticipated utility of the
missing knowledge with the cost of obtaining it.



This paper reports on an experimental effort to
understand how to instantiate the QUAIL question asking
framework for an individual learning component. In
particular, we describe a case study in which we applied
our question asking framework to a particular learner, both
to understand how to model questions for this style of
learner, and to investigate different strategies for selecting
questions to ask on the learner’s behalf.

The specific learner that we consider is a system called
CHARM (Yaman et al, 2008). CHARM learns a
lexicographic preference model for ordering objects from
training data consisting of pairs of the form a<b indicating
that a is at least as preferred as ». CHARM is being used
within the POIROT system to learn several preference
orders; here, we focus on its use for learning the order in
which to process patients.

Our experimental evaluation shows that, by and large,
question answering can be an effective mechanism for
improving learning performance in CHARM. However,
the study makes clear the importance of understanding the
value of different types of information for learning in
different contexts. It also yielded some surprising results
with respect to the knowledge nonmonotonicity, best
summarized by the phrase “a little knowledge can be a
dangerous thing”.

The paper is organized as follows. We begin with brief
descriptions of the question asking and preference learning
frameworks. Next, we present the experimental design and
results followed by a discussion of related work. We
conclude with a summary of the findings and some
directions for future work.

Question Selection Framework

Within a learning by demonstration setting, it is natural to
expect that the demonstrator will focus on interacting with
the system and so be tolerant of questions. Nevertheless, it
is important to impose restrictions on question asking to
keep interactions to a reasonable level. In addition,
different questions could be expected to provide different
levels of value to the learning process, where value is likely
to be correlated with context.

For these reasons our question asking framework,
QUALIL, formulates the question selection task in terms of a
cost-benefit analysis that draws on models of wfility and
cost for individual question instances. Details of our
approach can be found in (Gervasio and Myers, 2008); of
greatest relevance for this case study is the fact that
question-answering budgets are limited.

QUAIL includes two possible control strategies for
managing question selection. An asynchronous control
strategy supports a continuous model of question asking,
meaning that questions can be posed throughout the
learning process. In contrast, a synchronous approach
allows questions to be asked only at one (or possibly more)
designated points during learning.

Asynchronous strategies have the potential to provide
greater impact as information can be obtained when needed
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during learning. They also permit the possibility of
conditional question asking, where the answer to one
question can inform the choice of subsequent questions.
However, asynchronous strategies present challenges in
trading off the value that can be obtained by asking a
question at a given point in time with the potential
opportunity cost of not being able to ask other questions
later because of resource limitations. For this reason, our
case study focuses on the simpler case of synchronous
selection. In particular, we consider an approach where
questions are selected from a pool of possible questions at
a single point in time and answered as a unit.

The synchronous question selection problem can be
formulated as follows. We assume the following functions
defined for a collection of questions Q.

Cost(Q) = Y yep Cost(q)
Utilit(Q) = Y 40 Utility(q)

Definition (Synchronous Question Selection). Given a
collection of questions O={q; ... ¢,} and a budget B,
determine a subset Q'cQ with Cost{(Q") < B such that there
is no Q"cQ for which Cos{(Q") < B and Utilin(Q'") >

Utility(Q").!

This framing of synchronous question selection maps
directly to the knapsack problem (Kellerer et al., 2005).
Although the knapsack problem is NP-complete, there are
pseudo-polynomial time dynamic programming algorithms
that can generate solutions with O(nB) runtime (Garey and
Johnson, 1979). Given the limited budgets to be imposed
on question asking (to avoid excessive interactions with the
demonstrator), efficient question selection is possible using
these algorithms.

Preference Learning in CHARM

The lexicographic preference learning problem addressed
by CHARM can be characterized as follows: given a
collection of objects with an associated set of attributes and
a set of observations of the form a<b indicating that object
a is at least as preferred as object b, learn a partial order on
the object attributes that is consistent with the observations.
The partial order in turn defines a preference model for the
full set of objects.

CHARM (Yaman et al., 2008) approximates the target
preference model by constructing and reasoning with a
collection of models that are consistent with the
observations. Basically, it learns a partial order on the
attributes such that every linearization will be consistent
with the observations.

For simplicity, assume that all attributes are binary and
that the preferred value of each attribute is known. Given
objects a and b and the partial order, the preferred object is

" This formulation of the problem assumes that the questions in Q
are independent of each other, i.e., obtaining the answer to one
question does not impact the utility of answering the others.



determined through a voting scheme as follows: Among
their attributes that differ, those that have the smallest rank
(and are hence the most salient) in the partial order vote to
choose the preferred object. The object that has more
preferred values among the voting attributes is declared to
be the preferred one. If the votes are equal, then the objects
are equally preferred.

CHARM maintains the minimum possible rank for every
attribute that does not violate an observation with respect to
the voting scheme explained above. Initially, all attributes
are considered equally important (rank of 1). The algorithm
loops over the set of observations until the ranks converge.
At every iteration and for every pair, the voting predicts a
winner using the current partial order. If the prediction is
correct, then the ranks stay the same. Otherwise, the ranks
of the variables that voted for the wrong object are
incremented, thus reducing their importance.

It is easy to generalize this algorithm for the case where
the preferred value of a binary attribute is unknown. The
idea is to have two ranks per attribute, each representing
the importance of one attribute value. For attributes with
multi-values where there is a monotonic order on the
values, the same generalization can be used to learn the
preferred direction on the monotonic order. For example if
the attribute represents time, then CHARM can learn
whether /ater is more preferred than earlier or vice versa.

If the observations do not contain any hidden ties (i.e.,
two objects are equally preferred but the demonstrator
arbitrarily picked one over the other) then CHARM is
guaranteed to converge to the correct lexicographic
preference model (given enough data). Note that hidden
ties are possible only when there are irrelevant attributes.
Alternatively, if the preferred value of each relevant
attribute is known then the algorithm is guaranteed to
converge to the correct model regardless of the existence of
arbitrarily broken ties in the observations. The learning
algorithm has a mistake-bound of O(’), where n is the
number of attributes, because each mistake increases the
sum of the potential ranks by at least 1 and the sum of the
ranks in any lexicographic model is O(’).

Case Study Details

The case study focused on a particular preference learning
problem, namely that of Ilearning a lexicographic
preference model for ordering patients based on training
data extracted from a demonstration trace. Here, we
describe specializations of the learning and question asking
frameworks for this problem.

Within POIROT, the training data that underpins the
preference learning is implicit in the demonstration trace.
Training instances consist of pairs of the form PI/<P2
indicating that patient P/ is at least as preferred as patient
P2. These training instances are extracted from
demonstration traces by considering the order in which the
demonstrator processed patients.
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Features for Learning

As noted above, the preference learner bases its
generalizations on features of the objects that it learns to
rank. Patients in POIROT’s medical evaluation planning
domain are described by eight attributes:

= TriageCode: indication of the severity of the injury
(one of five predefined values)

=  WoundType: type of injury (one of ten predefined
values)

= PersonClass: category for personnel (one of seven
predefined values)

= ReadyForTransport: time at which the patient is
available for transport

= LatestArrivalTime: latest time at which the patient
should reach the assigned medical facility

= Special Needs: any special equipment or personnel
required by the patient (e.g., ventilator, translator)

=  Origin: location of the patient

=  Destination: location to which the patient is to be
brought

As discussed earlier, CHARM requires that the attribute
values be ordered, and learns whether higher or lower
values are preferred for each attribute. This requirement
eliminates the last three features, leaving the first five
features for learning a preference model for patient
ordering.

Question Categories

(Gervasio and Myers, 2008) defines a comprehensive
collection of questions to support question asking for
learning by demonstration. Not all of those questions are
relevant for preference learners. For example, a portion of
the questions target generalization of structure from
demonstration traces, addressing concepts such as causal
linkage and the extraction of loops and methods.

The QUAIL and CHARM teams jointly agreed that the
questions listed in Figure 1 would be the most natural to
consider within the case study. Q1 asks whether a given
patient should be handled before another, and so
establishes that the first patient is at least as preferred as the
second (but may not be more preferred). Q2 asks whether
one of the five patient attributes defined above is relevant
to the ordering. Q3 asks whether a given attribute is more
important than another for learning the ordering. Q4 asks
whether, for a given attribute, one value is considered more
important than another.

CHARM currently interprets negative answers to these
questions as positive answers to the inverse question. So,
for example, an answer of ‘no’ to the question “Is Attrl
more important than Attr2?” is taken to mean that Attr2 is
more important than Attrl. Because of this, the experiment
could not include questions for which a negative answer
could have meant that Attrl and Attr2 have the same rank
in the learned preference model.



Q1. Object ordering: Should <patient1> be handled before <patient2>?

Q2. Attribute relevance: Is <attribute> relevant to the ordering?

Q3. Attribute ordering: Is <attributel> more important than <attribute2>?

Q4. Attribute value ordering: For <attribute>, is <valuel> more important than <value2>?

Figure 1. Question Types for CHARM Experimental Evaluation

As noted above, the question selection mechanisms in
the QUAIL framework support a general model of costs for
questions. The intent behind the model was to associate
costs in a way that roughly reflected the ‘cognitive burden’
imposed on the demonstrator to answer them. After
consideration of the questions in Figure 1, we decided that
the questions were (by and large) equivalent in cognitive
burden and hence a uniform cost model should be adopted
for the experimental evaluation.”

Question Selection

Question selection uses the knapsack algorithm described
earlier. However, given the adoption of the uniform cost
model for questions, selection effectively reduces to
choosing questions in decreasing utility order, with
randomization applied to questions with equal utility.

As part of the experimentation, we were interested in
investigating the impact of different question utility models
on performance. For simplicity, we based utility models on
question type. We considered five different utility profiles
for questions, which can be characterized as follows.

= Uniform: assigns the same utility to all questions

= Object Ordering: assigns highest utility to questions
of type Q1

= Attribute Ordering:
questions of type Q2

= Attribute Relevance:
questions of type Q3

= Attribute Value Ordering: assigns highest utility to
questions of type Q4

assigns highest utility to

assigns highest utility to

As discussed further below, no more than five questions
are asked in the experiment. Because at least five
questions can be posed for each question type, additional
details of the utility models used are irrelevant here.

* The original experiment plan called for the inclusion of set-
oriented counterparts to the questions in Figure 1 that involved
selecting values from a collection of candidates. For example, the
set-oriented variant of Q2 is Which attributes in <attribute-set>
are relevant to the ordering? Such questions were to have higher
associated costs, given the additional mental effort necessary to
perform the selection task compared to the simpler yes/no
counterpart to the question. It was not possible to develop
mechanisms to absorb the answers for those questions into
CHARM for the initial round of experiments but those questions
will be considered in the future.
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Answer Incorporation into CHARM

CHARM incorporates answers to questions in three
different ways. The answers to object ordering questions
(Q1) are simply transformed into additional training data.
The answers to attribute relevance (Q2) and attribute-value
ordering (Q3) questions are used at the rank initialization
phase. For instance, if an answer from QUAIL states that
attributel is not relevant then the rank for all values of
attributel is set to more than the number attributes (less
importance than any other attribute). This effectively
prevents attributel from voting for any objects, thus
leaving it out of the decision process. Similarly, the less
preferred value of an attribute is assigned a high rank that
disables the attribute-value in the voting process.

The answers to attribute order queries (Q4) are compiled
into a set of constraints. A constraint representing
“attributel is more important than attribute2” is violated
iff the minimum rank for any value of attributel is greater
than or equal to the minimum rank for any value of
attribute? (note that a lower rank suggests more
importance). After the learning algorithm converges, i.c.
the ranks of the attribute-values do not change, the
algorithm iterates over the set of constraints. Every time
CHARM detects a violated constraint, CHARM minimally
modifies the ranks to satisfy the constraint. Basically,
CHARM will increment the rank of attribute? values
(hence decrease their importance) beyond the minimum
rank among all attributel values. After the modification the
algorithm goes back to iterating over the data until ranks
converge to a point where either all constraints are satisfied
or exits after detecting an inconsistency.

Experiment Design

The overall objective for the experiment was to evaluate
the ability of QUAIL’s question asking facility to improve
preference learning within CHARM. In particular, the
experiment was designed to investigate how different
question selection strategies impact CHARM’s ability to
learn lexicographic preference models for ordering
POIROT patients, compared to CHARM running without
question asking.

In real use, questions selection by QUAIL would be
presented to the human demonstrator for answering. To
facilitate experimentation, answers for the individual target
preference models were precompiled into an oracle that
QUAIL could query at runtime.



The experimental hypotheses for the case study can be
summarized as follows.

= HI. The additional knowledge provided by question
answering will improve CHARM’s performance.

=  H2. Higher question budgets will improve
performance.

= H3. Different utility models will result in different
questions being selected and differing performance.

*  H4. Question answering will provide more value
when learning more complex preference models.

Experimental Setup

The target lexicographic preference models for the
evaluation were generated randomly, varying the number of
relevant attributes and the ordering between them. Patients
for the ten training and test sets were drawn randomly from
a pool of 186 patients defined in the POIROT database.

A range of different target preference models was
investigated corresponding to learning problems of
differing complexity. = Complexity was modulated by
varying both the amount of training data made available
and the number of attributes that were relevant to defining
the preference model.

Learning performance was measured in terms of
CHARM’s accuracy in predicting preferences between
pairs of patients. More precisely, the accuracy was
computed as the ratio of ties and non-ties between the pairs
of patients that CHARM predicted correctly to the total
number of patient pairs.

CHARM was trained on a single problem defined over
five patients, and then tested on four problems defined over
five patients each. This was designed to mimic the actual
learning scenario in POIROT, where CHARM would learn
from data from a single demonstration for use in future
situations. Training data consisted of pairwise preference
information for (a subset of) the five patients in the
problem specification, corresponding to what would be
extracted from a demonstration trace where the expert user
schedules (a subset of) the patients in a particular order.
For each preference model, we report performance as the
average over the ten runs on the ten randomly generated
training and test sets.

Results

Description of Graphs

Figure 2 presents the main results from the experimental
evaluation. The four graphs show learning performance for
six different types of runs: the baseline consisting of
CHARM running on its own, along with CHARM running
with question asking enabled for the five question utility
models described earlier.

The figures along the top show the results when only a
subset of the five possible patient attributes was relevant to
defining the preference model; the figures along the bottom
show results when all five attributes were relevant. The
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figures on the left show the case in which only two of the
five patients were seen in training data, while the figures on
the right correspond to cases in which data on all five
patients was seen. For each of these four cases, evaluations
were done in which one, two, three, and five questions
were selected.’

The variations in number of relevant patient attributes
and number of patients in the training data were introduced
to vary the complexity of the underlying learning problem.
As can be seen by the baseline performance in these
graphs, increasing the number of patients seen results in
simpler problems. However, although one would expect
that increasing the number of relevant attributes to learning
the model would yield a more difficult problem; in fact,
that is only the case when all five patients are seen in the
training data. In particular, CHARM’s baseline
performance was weakest in the case where all five patient
attributes were relevant but only two of the five patients
were seen (Figure 2c¢) while baseline performance was
strongest in the case where all attributes were relevant and
all patients were seen (Figure 2d).

Discussion of Results

The experiments (generally) validate our hypothesis that
limited question answering enables CHARM to learn more
accurate preference models. The one case where this claim
does not hold is in the graph on the bottom right, which
corresponds to the easiest problem considered (i.e., has the
highest baseline score). In this particular situation, the
learning is already fairly successful (approximately 82%
accuracy). Appropriately targeted question asking should
still enable greater performance but clearly requires more
sophisticated strategies than considered here.

The results also (generally) show that performance
improvements increase when more questions are allowed,
as evidenced by the fact that the non-baseline results
generally trend upward as more questions are asked.

With respect to the hypothesis that question answering
will provide more value on more difficult learning tasks,
the results are inconclusive.  As noted above, question
answering provided little incremental value for the easiest
case on the bottom right while faring much better on the
other problems. However, the biggest performance gains
(choosing the best results over all utility models) were seen
on the problems with baseline scores of 70% and 75%
accuracy, with good but smaller gains on the hardest
problem with a baseline of 63% accuracy.

One key finding was the need for richer utility models
for questions. We had hypothesized before running the
experiments that attribute relevance questions (type Q2)
would provide the greatest benefit for learning. As it turned

’F igures 2b and 2d do not show data for the Object Ordering
utility model because the observations given to CHARM for these
cases contained the data that those questions could provide.



Models with 1-3 Relevant Attributes Out of 5 Total
(2 of 5 patients seen)

%Correct Predictions

#Questions

Models with 1-3 Relevant Attributes Out of 5 Total
(all 5 patients seen)

%Correct Predictions

#Questions

Figure 2a

Figure 2b

Models with All 5 Attributes Relevant
(2 of 5 patients seen)

%Correct Predictions

#Questions

Models with All 5 Attributes Relevant
(all 5 patients seen)

%Correct Predictions

#Questions

Figure 2¢

Figure 2d

—=— unifarm

—»— baseline

—+— ohject ardering

—&— attribute ordering
attribute relevance

—&— attribute value ordering

Figure 2. Experimental Results

out that was not the case. In particular, the results showed
that questions of type Q4 (attribute value ordering)
provided the greatest value overall. More generally, none
of the utility models that we investigated proved to be
superior in all cases. Our sense is that trying to knowledge
engineer high-quality utility models will prove to be
difficult. Moving forward, it would seem valuable to
explore the use of learning techniques to create the models,
drawing on features that would include properties of
individual questions, information about previously asked
questions, and the current state of the learned model.
Another unexpected result in the analysis was that the
use of only one or two questions sometimes led to
decreased learning performance. This negative result
derives from the specific way in which CHARM
incorporates answers from QUAIL. In particular, on
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questions of attribute ordering, given the information that
attrl is more important than attr2, the rank of attr2 is
lowered in the preference model. This works if attr2 also
happens to be less important than the other attributes, but
not if it is more important, as more often was the case in
our experiments. With the right set of answers, CHARM
could impose the correct relative ordering on the attributes,
improving its performance over the baseline. This problem
might thus be overcome by favoring questions that provide
information that ‘links’ to other known preference
information. More generally, this phenomenon raises an
interesting problem for managing question selection that
we had not anticipated originally, as we had expected that
POIROT learners would behave monotonically with
respect to answer information.



Related Work

Our work is closely related to the active learning paradigm
which, in its most general sense, lets the learning algorithm
request labels for unlabeled instances. Active learning has
been shown to improve the performance of learners in the
context of classifiers (Cohn et al., 1994; Balcan et al.,
2006; Dasgupta, 2005) and grammar induction (Angluin,
1987). Without budget restrictions, one can perform a
binary search over all models using a sequence of queries.
Our work limits the number of queries by imposing a
budget on question asking. Furthermore, our question
repertoire is richer than just membership queries.

Among other work, active model selection is similar to
our approach (Madani et al., 2004). It tries to determine a
sequence of tests with different costs that would
differentiate between possible models. In contrast, our
evaluations are based on a synchronous approach where the
selection of a question is independent of the answers to
other questions. QUAIL can act as the question asking
agent for multiple learners, drawing on a shared budget.
For this reason, QUAIL adapts a question selection
mechanism that is independent of the underlying learning
tasks. The question utility model acts as a bridge between
QUAIL and a learner, and lets QUAIL select a set of
questions to improve overall system performance.

Conclusions

Informed question asking capabilities have the potential to
enable learning by demonstration technology to work
effectively on much more complex problems than is
possible today, through the judicious injection of
knowledge to supplement demonstration traces. To date,
however, there has been relatively little effort focused on
understanding how question asking can be used within
learning systems, as well as assessments of the impact that
question asking can have on learning performance.

The case study reported in this paper takes a first step
toward furthering our knowledge of how to design and
operationalize question asking facilities for a particular
class of learner used in learning by demonstration systems,
namely a learner for lexicographic preference models. The
results show that, generally speaking, question asking can
improve learning performance on this class of problems.
However, it also reveals the importance of tailoring
question asking strategies to the characteristics of
individual learners to ensure the full benefits of question
asking. Finally, the results highlight the importance of
developing good utility models to guide the question
selection process.

Future directions for this work include performing
similar studies for other sorts of learners in isolation and in
aggregate, and developing methods to learn high-quality
question utility models.
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