Global Priors of Place and Activity Tags

Donald J. Patterson
Department of Informatics
University of California, Irvine
djp3@ics.uci.edu

Abstract

This paper describes an approach for creating detailed full-
coverage labellings of human activity. Our goal is to create
global maps of physical positions labelled with a distribution
over the most likely place name and most likely activity. We
ground our ontology of labels as: the term that a person would
want to display to someone before they initiate a communica-
tion. Rather than compiling a canonical list of possible labels,
we piggyback the label data collection in a situated commu-
nicative exchange. Using ideas inspired by image segmenta-
tion and extended to support our goals we propose machine
learning techniques for smoothing distributions across gaps
in existing data.

Introduction and Related Work

The consumerization of sensor-laden platforms such as mo-
bile phones, laptops, and vehicles, that also provide access
to the collected data, is enabling data sharing and activ-
ity reasoning to scale to new levels. A difficult challenge
which remains is to understand how the sensors from differ-
ent users, ostensibly deployed for specific different reasons,
can be principally combined and aggregated for new types
of uses.

In this paper we introduce a data collection approach and
inference mechanism by which it may be possible to create
dense geographic maps that are identified with place and ac-
tivity labels. We obtain information about place and activ-
ity labelling in a supervised manner by piggybacking onto
the communication practices of instant messaging and cell-
phone users.

Related work on plan recognition (Kautz and Allen 1986;
Wilensky 1983; Colbry, Peintner, and Pollack 2002), vision-
based activity recognition (Jebara and Pentland 1999; Boger
et al. 2006; Shi et al. 2004), and object-interaction-based
activity recognition (Perkowitz et al. 2004; Philipose et
al. 2004) formulates activities as collections of stereotypi-
cal sequential actions. When these approaches are applied
to real-world data, they tend to be successful in modelling
low-level behaviors in controlled environments or in very
domain-specific applications (e.g., hand-washing). We be-
lieve that when applied to global scale environments these
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approaches will be of limited success. The wide variety of
valid approaches to achieving a goal (executing an activity)
and correspondingly, the wide variety of reasons why such
an activity might want to be recognized, make a global state-
based recognition system a daunting pursuit. For example,
successfully recognizing that someone has “made tea” has
important modelling implications if the application automat-
ically calls social partners to the table as opposed to ordering
new tea bags or monitoring caffeine intake.

An alternative approach in the literature has been to treat
activity recognition as a classification problem with less
strict interpretation, if any at all, of the steps involved. This
includes unimodal evaluations of activity and social con-
text from audio (Choudhury and Pentland 2003; Stiger et
al. 2003; Stiger, Lukowicz, and Troster 2004), video (Fitz-
patrick and Kemp 2003), accelerometers (K. Van Laerhoven
and Gellersen 2004) and RFID (Patterson et al. 2005).

Although in this work we also approach the activity
recognition task as one of classification, we emphasize
multi-modal sensor evaluations like (Kern et al. 2004) and
(Choudhury, Lester, and Borriello 2005) in order to avoid bi-
asing our effectiveness on activities that are easily discrimi-
nated by one sensor (e.g., choosing activities such as “ham-
mering” or “grinding coffee” because sensing is done with a
microphone).

In this paper we describe a system for collecting place
and activity data from users. We characterize the existing
data and propose two models for smoothing the estimations
of place and activity names using loopy belief propagation.
Additionally we suggest some relevant extensions that are
necessary in order to account for application specific effects.
Our goal is to use our data to create a dense map of priors
over place and activity labels for every location on earth.

System

In determining the appropriate place or activity label for a
geographic position it is important to ground the labelling
in a specific practice, both to understand the nature of the
data collected and the purposes to which it can reasonably be
put (Hightower 2003). For the work described in this paper,
we developed an instant messaging (IM) application and a
Blackberry mobile phone application both of which function
like a smart address book. These applications provide access
to a buddy list and a contact list, respectively, in which each



Place: Activity: Other:
Iin my office _l| | | (busy) !
in my office [4 | eating lunch [4 |(busy) a
on campus hacking my CHI paper while | sip a delicious cup of coffee
in the LUCI lab data mining {urgent interruptions only)
in ICS2 Computer| |making coffee (IEEE Pervasive)
at home starting up {by Richard Stallman)
off campus on the phone (by Richard Stallman - GNU)
at work making on the phone (by Richard Stallman - GNU FSF)
in 253 grading (In4matix)
in IC51 253 ¥ |writi ¥ |(Indmatix also beer on an empty stomach) |¥
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Figure 1: top: Nomatic user interface before the user hits “Change” bottom: Subsequent suggestions provided by Nomatic

tool in lieu of current sensor readings.

name is augmented with a textual description of what the
remote buddy/contact is currently doing.

In order to be able to have such information available
the remote contact must manually update their textual de-
scription on their computer or phone. We have made a soft-
ware tool called Nomatic (Patterson, Ding, and Noack 2006)
which makes the process more automatic by acting like a
context-aware experience sampling system (Intille, Kukla,
and Ma 2002). Nomatic watches sensors on the device and
when it detects a significant change in context it prompts
the user to describe their current place, and activity. In ad-
dition to simply prompting a user, Nomatic also uses user-
specific decision trees to suggest appropriate labels for quick
entry. Instead of benefitting a researcher, however, this label
is broadcast to contact lists to help mitigate inappropriate
interruptions (see Figures 2 and 1).

In the process of updating their place and activity status,
this information, paired with sensor readings, is sent to a
community history database which forms the data on which
the work in this paper is based.

Data

We currently have over 40 laptop users and 4 Blackberry
users who are contributing data to our community history.
The data has been collected over 13 months and contains
over 600,000 status entries paired with sensor readings, pre-
dominantly from laptops.

In Table 1, we show the most likely, median likely,
and least likely status entries. This table demonstrates the
wide variety of ways in which people choose to catego-
rize their place and activity. The activities are not exclusive
(e.g.writing vs. working) do not look like the activity classes
that are currently represented in the academic literature and
include a range of detail, granularity, and specificity.

Figure 3 shows a histogram of the most popular place and
activity entries. Of the 487 unique place labels, the top 10
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Figure 2: Control Flow of Nomatic Tool: A user wants to
update their status message on their contact list, possibly due
to a context-aware prompt, so they hit a “Change” button.
Nomatic scans current sensors and uses machine learning
techniques to suggest a list of statuses from their personal
history. After a user picks one it is sent to IM buddy lists
and contact lists for viewing by remote contacts. The data
is also stored in a community history database for the work
described in this paper.



Rank Place Label Activity Label
1 at home {blank}
2 {blank} writing
3 in my office working
4 at dorm room writing a paper
| N2 | my friend’s house | drinking green tea |
N-3 Brixton looking for a place to live
N-2 Shanghai solving problems
N-1 | Olympia, Washington making flyers
N Lugu Lake sight seeing

Table 1: A table with typical status label entries. The place
and activity labels are independent.
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Figure 3: A histogram of label popularity. Each element on
the x axis corresponds to one unique place or activity label
ordered from most popular on the left to least popular on the
right. In this graph place and activity are independent.

account for 72% of all place entries. Of the 947 unique
labels, the top 10 account for 51% of all activity entries.
This data demonstrates the long-tailed nature of the ways
that people use to enter their status information.

Given this wide variety of data, it is possible to consider
generative approaches which treat activity as a language
construction process that is guided by current sensors.

Modelling

From this data we wish to develop priors of place and activ-
ity labels. We approach this task by modelling our data in
two ways. One as a GPS grounded data set and the second
as a network of connected wifi access points. Both of these
techniques are necessary because not all of the devices that
are contributing data to our database are outfitted with GPS
devices or conversely with wifi APS.

GPS Modelling

For GPS Modelling, we treat the world as a grid of 10m
blocks. We assume that each grid cell has a hidden “most
appropriate” place label and independent “most likely” ac-
tivity label. Clearly there are some obvious faults with this
assumption, such as the cell boundaries not being correctly
sized and aligned with the hypothesized true boundaries of
the place and activity locations, and the idea that there is
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Figure 4: Markov Network based on a GPS model labelled
with place observations.

actually just one correct label for a position. But one advan-
tage of this approach is that solving the aposteriori distribu-
tion on a given cell should produce a range of reasonable
values that, although not modelled as such, can be consid-
ered as multiple options for labelling that grid cell. Figure 4
shows a graphical representation of the model instantiated
with place labels.

This model has many commonalities with image segmen-
tation in which each cell in the planar belief net is a pixel
rather than a physical position. Unlike image segmentation
however, there isn’t an observation at every GPS position.

To solve this we use can use a standard Markov Network
formulation:

P(710) = %x) TTTI ¢e.cr(ii. O)
Z(x) =Y _ P(§0)

In this formulation however, the effectiveness is in the
definition of the potential function, ¢. .. There are some
desiderata that we need to include in our potential function:

e Privacy: It is important that one particular person la-
belling a location in a sensitive way not cause the solu-
tion to reveal that label. For example, labelling a spot,
“Bob’s house” based on one person’s entry would be in-
appropriate. Modelling this will require the introduction
of relational features which aggregate over the number of
individuals postulating a given label.

e GPS Noise: GPS has inherent error which needs to be
compensated for by allowing labels observed in one loca-
tion to influence labels in another location. This can be
handled by the existing correlated edges.

e Consensus not Frequency: Although one person may la-
bel a place 100 times with the same place label, this



Figure 5: Classification of a 15 km by 15 km region of
Southern California modelled with the simple GPS model

should not cause a competing label agreed on by 50 indi-
viduals one time each to be ignored. In fact the opposite is
true. We wish consensus to dominate frequency. This will
also require relational features to be added to the model.

e User Idiosyncrasy: One of the ways in which people use
the Nomatic tool is to label the place and activity that
they are about to go to and/or do. So there should also
be smoothing across individual trajectories. This requires
adding links to the network which correspond to a single
users trace through the world.

e GPS Lag: In addition to GPS noise, GPS devices are fre-
quently slow to sync with satellites when emerging from
indoor locations. Allowing smoothing of labelling across
temporal trajectories is also important.

o Curated Entries: Because there are going to be many loca-
tions which are not going to be initialized with Nomatic it
is worthwhile to include a mechanism for supporting cu-
rated labeling of entries. These are like user observations,
but are immune form privacy and consensus concerns.

Figure 5 shows the results of modelling the simple GPS
model applied to our data. In this 15km square area, most
likely place names are each given a unique color. More vari-
ation is apparent in regions with denser data collection.
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Figure 6: Markov Network based on an AP wifi model high
edge weights are characterized by physical proximity.

WiFI Access Point Modelling

Because not all users have GPS devices, an alternative
method of modelling the world is by treating combina-
tions of wifi APs as unique locations. Every wifi ac-
cess point is associated with a unique MAC address (e.g.,
00:19:07:d4:14:00), when Nomatic makes an entry in the
community history it records all wifi access points that are
detected from the platform at the given time. By treating
each combination of detected access points as a location,
and by connecting two access points when any of the de-
tected access points are in common, and by labelling the
edges with weights which are the percentage of overlap it
is possible to get a graph which has characteristics of the
physical layout of a wifi network. See figure 6 for example.
Edge weights are calculated according to this formula:

w(A_Pl,A_PQ) =min |AP18AP2| |AP19AP2|
|AP] |APs|

All of the non-GPS specific desiderata apply to modelling
this network as well. The primary difference between these
two approaches is the non-regularity of the AP model and
the density of observations in the AP model. It is the rare
case that a node in the AP model wouldn’t have an observa-
tion, whereas in the GPS case observations are much sparser.

Hybrid Approaches

Since wifi APs are physically located, it is possible to create
a hybrid of these two models in which wifi access points
are tied to specific geographic positions when possible. This
corresponds to having the wifi model overlay the physical
model and having the two models pinned together at places
where access points locations are known. The process of
pinning wifi APS to a physical location is known as war-
driving.



Conclusion

In this paper we have introduced a data set that lends itself
to global modelling of place and activity label priors. It is
not an abstract set of labels however, it is grounded in a very
specific situated use of labelling that benefits the users who
participate in the system.

By modelling the physical situation of the user and incor-
porating features which help to accomodate the unique ways
in which physical data is collected in our system we hope to
develop global models of human behavior.
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