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Abstract

Rich Internet Applications provide, in conjunction with
Internet push technologies, a powerful framework to
bring use cases formerly reserved to server applications
to the client, and to ease their use. In this paper we
present a novel approach of monitoring and process-
ing event streams directly in the browser. Our pro-
posed general-purpose framework aims at the design of
event-driven, reactive and adaptive Rich Internet Ap-
plications. We propose to interweave complex event
processing with declarative rule execution directly on
the client-side. Our work is based on a novel event-
condition-action rule language tailored to the needs of
Rich Internet Applications as well as algorithms capa-
ble of detecting complex events and executing rules.
The whole approach will be illustrated by means of an
example originating from the field of algorithmic stock
trading.

Introduction

Recently, the design paradigm of an event-driven architec-
ture (EDA) gained momentum as there is a need in the
service-oriented world to trigger and monitor the execution
of services. In parallel AJAX-based Rich Internet Applica-
tions (RIAs) appeared on the Web developer scene leading
to desktop-like Web applications. As a third programming
paradigm declarative ontology- and rule-based systems al-
ready proved their effectiveness of making the semantics of
business objects and application logic explicit. Taking the
best of the three worlds, we propose the enhancement of
RIAs by complex event processing1 (CEP), rule execution
and formal semantics in order to deal with challenges like
algorithmic trading, ad-hoc workflows, personal and com-
munity task management as well as with adaptive user inter-
faces to name only a few use cases.

State of the art event-driven RIAs rely either on the Comet
architecture introduced by Alex Russell in 2006 (Russell
2006) or on client polling strategies like RSS feeds. The
Comet architecture particularly allows pushing events to the

Copyright c© 2009, Association for the Advancement of Artificial
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1Luckham and Schulte define CEP as: “Computing that per-
forms operations on complex events, including reading, creating,
transforming, or abstracting them.” (Luckham and Schulte 2008)

client. Such technologies provide the basic infrastructure for
transporting events to the client but they provide no means
for processing and reacting to those events. This gap will be
closed by our approach.

Our approach proposes intelligent RIAs (IRIA) combin-
ing complex event processing and rule execution with an
ontology-based object model directly on the client. We pro-
pose a framework built on meaningful business vocabular-
ies, declarative rules and design patterns for achieving reac-
tive and adaptive RIAs. Our main objective is to show the
advantages of such an approach and to show that our ap-
proach scales well.

The paper is structured as follows: First we outline related
work and give an example in order to motivate our research.
In the following section we present the logical system archi-
tecture. In the section JSON-Rules we describe our declar-
ative rule language tailored to the needs of RIAs. After that
we detail our client-side, event-driven rule engine. A perfor-
mance evaluation is given in the Evaluation section and the
paper sums up with conclusions and future work.

Related Work

Although the idea of combining CEP, production rules and
formal business vocabulary in RIAs is new, we built our ap-
proach on already existing work. Possibly the earliest lan-
guages for event specification have been developed for use in
active databases to realize complex, composite trigger func-
tionality. Apart from their original purpose of e.g. describ-
ing transactions or watching method calls in object oriented
databases or the like, these languages are universal in their
capabilities of building complex expressions from an arbi-
trary set of simple events. Several event detection strate-
gies have been developed over the last decades like graph-
based approaches (Chakravarthy et al. 1994), finite state au-
tomata (Gehani, Jagadish, and Shmueli 1993) and colored
petri nets (Gatziu and Dittrich 1994). The amount of com-
plex event pattern languages is also immense: ODE (Gehani,
Jagadish, and Shmueli 1992), Snoop/SnoopIB (Adaikkala-
van and Chakravarthy 2006), Reaction RuleML (Paschke,
Kozlenkov, and Boley 2007) are examples of pattern lan-
guages, CQL, CCL, StreamSQL are some of many exam-
ples with a syntax reminiscent of SQL. Our work was in-
spired by Snoop and Reaction RuleML. The definition of
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complex event patterns in our JSON2 ECA language is to a
large extent based on the SnoopIB operators. Our detection
algorithms for complex events are graph-based as proposed
in (Chakravarthy et al. 1994).

In (Carughi et al. 2007) an architecture for RIA based
on events is proposed very close to the Comet architecture.
In this paper RIAs have the ability to receive events and to
react to those events. Our solution goes one step further as
we equip RIAs with the ability to construct complex events
out of simple events. This architecture makes our solution
more powerful, flexible and open for personalization. The
main difference is that we moved the detection of complex
events from the server to the client.

In (Schmidt et al. 2007; 2008) an architecture for adapting
RIAs based on production rules is proposed and in (Schmidt
and Stojanovic 2008) the drawbacks of production rules and
the need for complex event processing on the client-side are
explained. Our current work takes and lifts the ideas by
adding complex event processing capabilities to RIAs.

Motivating Example: Client-side Algorithmic

Trading

IRIAs can be applied to application areas whenever the com-
putation and reaction to events is crucial and whenever the
application is delivered over the Web. One example, out of
many, is monitoring of stock quotes. The example is taken
from the domain of financial trading. So far algorithmic
trading was the domain of server-side applications only. But
with the increase of bandwidth of Internet connections and
the growth of computing power of client machines computer
intensive event-streaming applications are able to move from
the server to the client.

The use case is as follows: A user wants to monitor his/her
stock portfolio. In order to do so he/she subscribes to a
Comet stream of stock quotes provided by his/her online
trader. Having the stock quotes in the form of change events
on the client he/she can write an application that processes
them. Event processing ranges from simply displaying the
actual stock quotes in a table to executing rules triggered by
computed complex events in order to provide visual feed-
back if a user interaction like buying or selling stocks is
needed.

Logical System Architecture

The logical system architecture of our framework, enabling
the design and execution of IRIAs, is decomposed into the
design- and the run-time architecture. The design-time ar-
chitecture embraces all components in charge of definition,
configuration and maintenance of IRIAs. The run-time ar-
chitecture, in turn, comprises all components covering the
real-time algorithmic detection of events and the execution
of rules.

Design-time Architecture

The aim of the design-time architecture is to configure the
IRIA in order to properly react to incoming events. The

2JavaScript Object Notation: http://www.json.org/

component consists of sub-components that allow the user to
define, edit or import business vocabularies, stored in an on-
tology as well as ECA rule sets and event-sources scattered
on the Internet. The design and configuration component is
part of the whole IRIA and can be easily accessed via the
browser. The format of the imported sources must conform
to our JSON-Format for representing ontologies (Schmidt et
al. 2008), ECA rules and configuration data.

The GUI is the convenient entry point for the user or ad-
ministrator to configure the IRIA and serves as the visual
access point for the subsequent design and import compo-
nents. It provides an intuitive graphical editor for the busi-
ness vocabulary and the ECA rules. Besides the rules and
the business vocabulary the IRIA has to know: How to con-
nect to the event sources. This information is provided by
the configuration component.

The import functionality enables the user to bring in pre-
defined rules, business vocabularies and adapter configu-
rations already encoded in JSON. The files containing the
JSON representation can reside on the Internet or on the lo-
cal file store. We recommend a public repository accessible
via HTTP or HTTPS as a single point of access in order to
comfortably find the needed information. Coming back to
our example, the user could search for already predefined
ontologies for stock quotes and stock related events in the
Internet repository.

Currently only the import functionality is implemented.
We did not yet finish the implementation of a uniform GUI
for editing the ontologies, rules and configurations. From
a usability point of view all components responsible for the
configuration of the IRIA should be hosted as a part of the
IRIA itself, because switching between applications and te-
diously importing different data formats is always an annoy-
ing and error-prone job. So, for instance, ontologies must be
currently designed in an ontology editor like Protégé3.

Run-time Architecture

In order to produce a compelling event driven application,
different event sources greatly enhance the possibilities.
Client-side events are available from user interaction with
the browser and Document Object Model (DOM) events.
In addition temporal events are available, i.e. timeouts, in-
tervals, recurrence, offsets, etc. Our approach, however,
puts the focus on server-triggered events to tap further event
sources and thereby opening up to events triggered across
the network. For our JavaScript implementation we utilized
a server push technique from the general family of Comet
architectures. In our example, the Comet server provides a
stream of stock market events, e.g. changing quotes. RSS
feeds are another type of event sources. This option has
the advantage of tapping the host of publicly available data
sources today, which broadens the scope of an event enabled
application. The option, however, has the downside of not
truly being event driven, since events only happen at prede-
fined polling intervals. Feed items, however, can be locally
interpreted as events.

3Protégé: http://protege.stanford.edu
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Incoming events are categorized into types depending on
their origin, their purpose or other criteria the event source
may impose. The events are then fed into the complex event
detection part of our framework, which uses the occurrences
according to their type to satisfy complex event specifica-
tions from the user’s rules. The detection part queues the
simple events until they can be used. Alternatively, it dis-
cards them, when they can no longer be used in a more com-
plex event. When a complex event belonging to an ECA
rule is detected, the associated condition is checked. If an
event is present and the condition memory in Rete (Forgy
1982) has also found a match for the condition, the rule ac-
tion is executed. Actions may be arbitrary JavaScript code
or the triggering of a further event or the manipulation of the
working memory. Triggering events and altering the work-
ing memory can change the outcome of other rules, activat-
ing them in turn. Also the DOM may be manipulated for
visual or other interaction with the user.

JSON-Rules: A Client-side Rule Language

We propose a lightweight reactive rule language tailored to
the needs of Internet applications, specifically applications
that profit from or need complex event processing, condition
evaluation in working memory and rule actions written in
JavaScript.

As a representation for our rules we use JSON, because it
is almost directly usable within JavaScript. JSON can spec-
ify objects, arrays and primitives. A rule object contains the
three attributes event, condition and action. The
event part consists of Snoop operators. The condition part
uses filters and joins like those in traditional production sys-
tems. The action part contains one or more JavaScript code
blocks. For the event part the usual Snoop operators are
available:
• Or(e1, e2) — either of the two events must occur for the

complex event to occur
• And(e1, e2) — both events must occur
• Any(m, e1, e2, . . . ) — m of the specified events must oc-

cur
• e1; e2 — the strict sequence of the specified events (the

constituent events are not allowed to overlap if they are
complex themselves and are detected over an interval of
time)

• A(e1, e2, e3) — the aperiodic event is signaled each time
e2 is detected within the time interval formed by the other
two events

• A∗(e1, e2, e3) — the cumulative version of the former
event is triggered at the end of the interval and accumu-
lates all occurrences (if any) of event e2

• P (e1, T I[:parameters], e3) — the periodic event which is
triggered regularly after the time interval TI , an optional
list of working memory elements or JavaScript identifiers
may be given, the values of which are added to the event
occurrences as parameters

• P ∗(e1, T I:parameters, e3) — the cumulative version of
the former event, it is detected at the end of e3 and accu-

mulates all intervals with their parameters, the parameters
are mandatory here, because a set of plain, past temporal
events would in itself not be of any use

• Not(e1, e2, e3) — this event occurs if no e2 is detected in
the specified interval

• Plus(e1, T I) — it occurs at TI time after the detection of
e1

• Mask(e1, condition) — modeled after the event masks
from ODE (Gehani, Jagadish, and Shmueli 1992) en-
forces a condition on the event e1 allowing e.g. for fine-
grained constraints of event types, that may utilize the
business vocabulary

The event operators in our rule language are represented
as tree nodes. The simple, atomic events form the leaves.
This hierarchical representation allows a lean, abstract syn-
tax without constructs from concrete syntax (like parenthe-
ses) compared to textual event expressions.

A condition in our language may use comparison opera-
tors, set operators, identifiers from the working memory and
direct literal values. Comparison operators are <, >, =, <=
and >=. Identifiers specify items from the working mem-
ory.

Rule actions are JavaScript code blocks or events to be
triggered or working memory elements (WMEs) to be ma-
nipulated. A code block has access to the set of events
that has led to the firing of the rule and the WMEs lead-
ing to the fulfilled condition part. Thus rule authors may
create applications that do calculations on the parameters of
the collected events and the matching working memory el-
ements. Use of the business vocabulary provides the neces-
sary means of finding the event parameters and attributes of
interest.

Client-side Event-enabled Rule engine

For our implementation we chose JavaScript from the avail-
able Web programming languages. The data structures and
program logic we implemented are roughly divided into the
following areas: adapters for the rule language and the re-
mote event sources, the working memory, condition repre-
sentation and evaluation as well as complex event detection
(see Figure 1).

For complex event detection we are using a graph based
approach as proposed in (Chakravarthy et al. 1994). Initially
the graph is a tree with nested complex events being parents
of their less deeply nested sub-events, down to the leaves
being simple events. However, common subtrees may be
shared by more than one parent. This saves space and time
compared to detecting the same sub-events multiple times,
and renders the former tree a directed acyclic graph. The
graph is built starting at the leaves, bottom-up. The sim-
ple event types from the available rules are stored in a hash
map, and form the leaves of the tree. The hash keys are the
event names. Each hash value (i.e. leaf) has a list of parents
containing pointers to inner tree nodes. These in turn carry
references to their parents.

When using the term event, a distinction must be drawn
between event occurrences (i.e. instances) and event types,
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Figure 1: System overview (block diagram)

usually done implicitly. In the detection graph the nodes
are event types, they exist before there are any instances.
Event instances exist after simple instances arrive and are
fed into the graph at the leaves. Complex instances are then
formed at the parent nodes, which in turn propagate their
results upwards. Every complex event occurrence carries
pointers to the set of its constituent event occurrences, so
that the events and their parameters can be accessed later.
Once an occurrence is computed at a node which is attached
to a rule, the evaluation of the associated condition is started.

A condition is converted into a branch of the Rete net-
work, emulating the nesting of operators from the rule lan-
guage, shown in the Section JSON-Rules. Upon loading a
new rule, its condition is used to extend the network. The
Rete network is a matching algorithm to find patterns (con-
ditions) in large sets of objects. Objects are contained in
a so-called working memory and consist of an identifying
string and a type from the set of classes in the business vo-
cabulary. Thus any working memory element can be queried
by its name or its type. Hash maps are used to implement
fast lookup of the objects by these criteria. Hash maps are
also used to represent the Is-A relationship for types from
the business vocabulary to find matches by supertype. We
do not use object-oriented inheritance here because faceted
classification4 is more expressive. Primitives may also be

4Faceted classifications “do not require complete knowledge
of the entities or their relationships; they are hospitable (can ac-
commodate new entities easily); they are flexible; they are ex-
pressive; they can be ad hoc and free-form; and they allow many
different perspectives on and approaches to the things classified.
She lists three major problems: the difficulty of choosing the
right facets; the lack of the ability to express the relationships be-
tween them; and the difficulty of visualizing it all.” (Kwasnik 1999;
Denton 2003)

added to the working memory which are autoboxed and un-
boxed5 to be handled transparently. Subsequently an item
can be retracted, whereupon all references in the working
memory and the Rete network are deleted.

Rule execution is done by inspecting the action parts in
the rule specification. For actions triggering events a new
simple event occurrence is fed into the detection graph at
the leaf of the corresponding event type. As the leaves are
stored in a hash map, finding the leaf to a name is a simple
lookup. For every JavaScript action that is specified in the
action part of the rule, the code runs inside a new function
that is created at the time of adding the rule to the system.
The set of events that led to the activation of a rule is passed
to this function. Thus the rule action may employ the data
from the constituent events and working memory elements
in its computation. That includes the occurrence and du-
ration times, the number and sequence of events, and the
parameters carrying all values collected at the occurrence of
the events.

Adapters had to be implemented in several components
of our framework. The incoming events from the Comet
server must be instantiated as first class objects in order to
propagate and store them in the detection tree. This is done
by an adapter, which constructs new objects for the events,
adds the timestamp when it was received, and adds param-
eters according to the type of event in accordance with the
business vocabulary. The event is then fed into the detection
graph. Adapters for other event sources may be added, e.g.
to facilitate the polling of RSS feeds, and the construction

5Autoboxing is the term for automatically altering a value type
into a reference type without a programmer’s being involved . The
system automatically supplies the extra code needed to perform the
type conversion. Unboxing it the other way around.
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of event objects for the feed items or for detected changes in
repetitive feed items.

Another adapter converts the declarative rule language
into internal data structures using the graph builder com-
ponent. The adapter dissects the rules. For the event part
the rules are turned into nodes for the detection graph. The
graph builder incorporates them into the graph, reusing com-
mon subtrees that it can detect among the newly added nodes
and the existing graph. Among the detected similarities are
identical subtrees, commutations of the children of operator
nodes And and Or, identical temporal events and identi-
cal simple events. For the condition part the graph builder
extends the Rete network accordingly to start matching the
new expressions. For the JavaScript blocks in the action part
of each rule the adapter creates functions. As functions are
first class objects in JavaScript, they need to be compiled
only once and can be stored by the graph builder for later
invocation.

Evaluation

The performance evaluation aims to demonstrate that CEP
and a client-side rule engine for the Web are indeed feasible.
In this section we will show that an event rate of about 64
events per second is possible with a given rule set on our test
machine. Concerning the implementation of the Rete algo-
rithm a rate of about 32 modifications per second is possible.

Our test machine is a 2.4 GHz Intel Core2 CPU with
four cores. Since JavaScript execution is inherently single-
threaded it profits only from one CPU core. Having spare
cores for other tasks and a generally low operating system
load provides results uninfluenced by other running tasks.
The chosen JavaScript engine is Mozilla Firefox 3.0.3 for
Windows using the Firebug6 profiler. The browser was in-
stalled freshly with no extra plugins.

We start out with the BEAST benchmark (Geppert et al.
1998). BEAST is an attempt at measuring CEP performance
in early CEP applications from active database systems. We
borrow some of the benchmarking rules which are applica-
ble to our CEP engine. Some of the event operators were
not applicable to our event pattern language (Snoop), like
the count based window operator (cf. Figure 3 on page 8 of
(Geppert et al. 1998)).

The remaining rules which are tested are:
SEQ(EvED-061, EvED-062), a sequence of two
events, NOT (ED07 TX, EvED-07, ED07 TX), the
non-occurrence of EvED-07 in the interval of two
other specified events and finally: SEQ(EvED-091,
SEQ(OR(EvED-092, EvED-093), EvED-094), the se-
quence of one event, followed by a disjunction and followed
by another event.

The tested rules contain empty actions, so only the CPU
load for complex event detection is measured. We run each
test for 30 seconds at various frequencies of simple events
per second. The simple events in the previously mentioned
patterns are entered into the detection system in a round
robin manner. We then measure the load percentage the de-

6Firebug Web site: http://getfirebug.com/
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Figure 3: CPU load by increasing fact modifications

tection system takes to match the incoming events and pro-
duce complex events.

The results are shown in Figure 2. The chart shows that
our event detector can handle a maximum of about 64 events
per second in real time. After that the JavaScript engine is
used up to capacity and further incoming events are queued
up.

We take a similar approach for rule conditions to measure
the performance of our Rete implementation. Three condi-
tion expressions are added to the Rete network with the same
nesting depths as the event expressions. The working mem-
ory is initially filled with 1000 working memory elements
(WMEs). Then we start modifying WMEs at different fre-
quencies, round robin. Again, we measure the CPU load
caused by the pattern matching functions. Figure 3 shows
the result. Our rule engine is capable of processing about 32
modifications per second without being overloaded.

The general use case for our framework is to aid in mak-
ing RIAs more reactive and adaptive. This means reacting
upon user input, as well as server-generated events of inter-
est to the user, etc. Events from the human user and events
received across the Internet are not occurring at millisec-
ond rates and our framework is fast enough. However, it
should be mentioned that expensive rule actions may lessen
these results. On the other hand, upcoming new browsers
promise a significant increase in JavaScript performance due
to newer compiling techniques. Nevertheless, currently we
expect the results to be sufficient for most client-side appli-
cations including our example application.
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Conclusions and Future Work
In this paper we presented a novel type of event-driven, re-
active and adaptive Rich Internet Application: IRIA. We
demonstrated that the use of declarative event patterns and
rule expressions yields IRIAs capable of processing and re-
acting to continuous event streams. We showed that IRIAs
are an alternative to pure server-side event processing appli-
cations. With the help of an example derived from finan-
cial trading we explained our design- and run-time architec-
ture and the JSON ECA rules. In the evaluation section we
proved the efficiency of our approach to event detection and
condition evaluation. In future work we will present the for-
mal definition of our JSON ECA rule language and another
example application demonstrating the use of client-side re-
active rules to enhance an e-Government Web portal.
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