Demeter: An Implementation of

the Marlinspike Interactive Drama System

Zach Tomaszewski & Kim Binsted

Information and Computer Science Department,
University of Hawaii—Manoa, Honolulu, HI 96822
(ztomasze@hawaii.edu & binsted@hawaii.edu)
http://zach.tomaszewski.name/argax/

Abstract

Demeter is a text-based prototype game that demonstrates
the Marlinspike architecture for producing computer-based
interactive dramas. Marlinspike uses a top-down, directed
approach to generating stories: a central drama manager
agent responds to story-significant user actions by selecting
the next scene to play from a pre-authored collection. This
drama manager strives to explicitly reincorporate past user
actions into the story in order to meet an Aristotelean
definition of narrative unity.

Introduction

Marlinspike is designed to produce a directed interactive
drama. An interactive drama is a system in which the
player assumes the role of a character in an unfolding story
and, through their actions within the virtual story world,
influences the outcome of that story. Marlinspike is
directed in that it includes a centralized drama manager
that attempts to choose the next story event in such a way
as to produce a well-formed, coherent plot that includes the
user's actions. This is in contrast to a purely emergent
approach, in which a story is meant to emerge solely from
the player's interactions with autonomous character agents

Marlinspike Architecture

A Marlinspike drama takes place within a particular story
world—a collection of simulated objects, including
locations, props, and characters. The player dictates the
actions of one of these characters (the player character, or
PC); the other non-player characters (NPCs) are controlled
by the drama manager.

The player interacts with the objects of the story world
by selecting one of a number of verbs to perform. Verbs
specify simple physical actions, such as taking, dropping,
kissing, or talking. Based on the current story context, each
verb is then translated into one or more actions that
represent what that verb signifies within the current story.
For example, a kiss may have different "meanings"
depending on the context: it could be an attempt at
romance, it could be done simply to break a magical
enchantment, or it could be a Judas-like betrayal.

The Marlinspike drama manager (DM) then responds to
user actions by selecting the next scene to play. Whenever
possible, scenes are selected so as to reincorporate user
actions into later story events. This reincorporation forms
a story thread of connected events that makes earlier user
actions narratively necessary to the finished story.

or the static rules of the story world. The details of this architecture—particularly as
. Story
§ Events
§ () Actions
H \
g | N\ [] Scenes 5
5 : \| Thread Manager | : §
A [__Story Context Drama Manager [i
. World
: NPC :
NPC NPC
[Characters] [Setting]

Figure 1: Overview of the Marlinspike architecture

133

implemented in the current prototype—are described
below.'

Story World: Characters and Objects

Objects in the Marlinspike story world are simply bundles
of state and invoked behaviors. For examples, props
include such state as their current location in the world;
they may also define their own specific responses to being
affected by different verbs.

Similarly, non-player characters are not autonomous
agents, but simply puppets of the drama manager. NPCs
are comprised of a number of attributes, including morality
(how altruistic or self-interested that character is) and
affinity (how much they like or dislike another particular
character). These attributes affect how certain verbs are
translated to actions and how scenes are selected (see
below). NPCs also contain their own set of potential
conversation responses, which can be used by scenes to
customize the story's narration depending on which
particular NPC has been selected to perform the events of
that scene.

World-Level Events: Verbs and Deeds

As the Marlinspike implementation is currently text-based,
example player commands might include take tennis
ball, go north, talk to Alice, or punch Fred.
These illustrate the verbs Take, Go, Talk, and Attack
(for which "punch" is a synonym). When we include the
direct object each verb affects in the story world, we
produce a number of world-level events called deeds:
Take (ball), Talk (Alice), Go (n_obj),
Attack (Fred). Occasionally, a deed requires a second
object, as in: Show (Alice, ball).

The physical outcome of deeds is usually presented to
the player as a single sentence of narration, such as
"Taken." or "You take a swing at Fred... but he ducks your
blow!"

Story-Level Events: Actions

Every deed is then translated into a story-level event based
on the current story context. These action events are story-
level representations of player deeds. Action events have a
structure like that of deeds that includes both the particular
action and its affected objects or characters.

Through a processes called casting, every verb has a
default translation to an action. For example, the verb Drop
generally translates to the MANIPULATE action.

This default translation may take the current world-state
into account. So the deed Kiss (Alice) should translate
to the event ROMANCE(Alice) only if Alice already has a
high affinity for the player. If Alice detests the player, this
same deed would be better translated to ASSAULT(Alice).

! The Marlinspike architecture, as described here, was originally
presented in (Tomaszewski & Binsted 2008), although it has been
refined somewhat since then. Please see this earlier work for
more on Marlinspike's theoretical inspiration as well as a
comparison to other interactive drama systems.

134

Occasionally, this default casting can be completely
overridden by the story context. For instance, if Alice has
been transformed into a frog, then Kiss (Alice) should
perhaps instead become RESCUE(Alice).

A deed can also be translated into more than one action.
In this case, the extra action events form of a tree of sub-
events called recasts. So, if the player has already
established a girlfriend relationship with the character
Betty, Betty might take offense at this kissing of Alice.
This secondary effect would be appended as a recast,
producing the following structure:

RESCUE(Alice)
|— OFFEND(Betty)

Actions have effects associated with them. Since only
deeds change the "physical" state of the world, action
effects are generally limited to character state changes. So
RESCUE(Alice) will probably increase Alice's affinity for
the player, and possibly increase the player character's
morality value.

Unlike deeds, actions do not produce any narration.
After each event has occurred, it (including all of its
recasts) is appended to an event history list, which forms a
transcript of story-level events that have occurred so far.
Once recorded there, the DM can respond to the action
with a scene.

Story-Level Events: Scenes

Scene events—the other kind of story event—represent a
bundle of narration and world-level manipulations made by
the DM. Scenes are pre-authored components that serve
three purposes in Marlinspike. The first is to provide
reactions to player actions. While verbs provide narration
of their world-level effects, only scenes provide narration
of NPC responses and other story-level effects. The second
purpose of scenes is to advance the story by introducing
new incidents and material. Finally, scenes can provide a
story context that may affect later verb-to-action
translations (as previously described above).

Every scene has a list of preconditions that determines
whether it can currently be performed and appended to the
story-so-far. Preconditions might include the current story-
world time, character locations, prop states, character
attributes, or previous story events.

While pre-authored, scenes can be heavily templated so
that specific details are filled in at run-time. For example, a
scene could be written to handle any character's reaction to
being ASSAULT-ed by the player. This could be written
generically enough to occur at any location, and even the
particular reaction can be customized with dialog or other
details pulled from the reacting NPC or the event history.
Similarly, any character with a strong grudge against the
player—due to some earlier event—could be cast to appear
in a scene requiring a betrayal of the player.

Besides preconditions that must be true for a particular
scene to run, scenes can also include hooks, which are
previous events that the scene can refer to or otherwise

reincorporate if they have occurred. This aids in threading
(described below).

Each scene belongs to one of three functions. Beginning
scenes have no preconditions and are selected by the drama
manager to start a new story. The bulk of scenes are
middle scenes, which serve to advance the story in some
way. Ending scenes have preconditions, but provide a
conclusion to the current story.

Like a paragraph in a novel, scenes vary in how much
action they present. A scene may be only a single line of
dialog delivered by an NPC in response to a question asked
by the PC. On the other hand, a scene may be paragraphs
long or summarize the passage of hours. Regardless of
length, no user input—and thus no deeds or actions—are
possible during a scene. Like actions, completed scenes are
appended to the story event history.

Story Context: Triggers

Scenes can add to the story context by introducing a
trigger. A trigger simply watches for the later occurrence
of a certain verb or action and can then interrupt or append
to its translation into an action.

For instance, in an interactive Bluebeard fairy tale, a
scene could have Bluebeard tell the player not to open a
certain closet. The scene then ends, but it would also add a
single trigger to watch for the Open(closet) deed.
Should this deed occur, the trigger can then recast the
default MANIPULATE(closet) event to include a
DEFY(Bluebeard) sub-event. Now both the MANIPULATE
and the DEFY actions can provide material for future
scenes. Certainly such a fairy tale would include a scene
that provides a response to DEFY-ing Bluebeard.

Sometimes a scene may need to establish a more
complex context than can be managed with only one or
two separate triggers. In this case, a trigger bundle can be
used. Whenever a bundled trigger fires, it also alerts the
bundle so that the state of the other related triggers can
updated if necessary. Such bundles can be used to
represent important story-level states, including roles. For
example, a scene may cast an NPC into the role of a
Friend. This Friend role may then serve as a precondition
or a hook for certain scenes. However, this role state is
essentially self-managing in that it sets recast triggers for
conditions that would end the role—such as if the player
severely affronts the Friend character.

Narrative Unity: Threads

It is not sufficient for an interactive drama system to
simply provide believable responses to separate player
actions. Such an approach may present a very believable
virtual world, but it will frequently fail to produce a
coherent story that also includes the player's diverse

SCENE context
['Bluebeard's (recast trigger)
Interdiction"] -

MANIPUATE(closet)
|—DEFY(BIuebeard)

actions in that world. Therefore, Marlinspike strives to
weave both user actions and authored scenes together to
produce a finished story that meets an Aristotelean
definition of narrative unity. Specifically, Aristotle claims
the events of a story must be connected by necessary or
probable cause. These causal connections produce a single
narrative Action that is both whole and complete, such that

if any [part] is displaced or removed, the whole will
be disjointed and disturbed. For a thing whose
presence or absence makes no visible difference is not
an organic part of the whole (Aristotle 1961, Chapter
VD).

Taking inspiration from Keith Johnstone's (1979) work
in improvisational theater, Marlinspike attempts to form
such a unified Action by reincorporating previous events.
If an earlier event A4 is required before the current event B
can occur, then we can say that event A is necessary for
event B. Therefore, Marlinspike attempts to select the next
scene so that it makes necessary to the story as many
important earlier events as possible. For example, suppose
that, for no apparent reason, the player chooses to insult an
NPC in a bar. Even if the NPC reacts immediately by
getting upset and storming off, the player's action has not
yet had a significant effect on the story if that NPC does
not appear again. However, if the system responds at some
point later in the story by reincorporating this action—for
instance, by having the now-antagonistic NPC turn out to
be the father of the PC's new girlfriend—then the player's
INSULT action is made necessary to the finished story: it is
a direct result of the insult that the player cannot now take
his new girlfriend out on a date.

There are two primary ways to form reincorporation
connections between events in Marlinspike. The first is
through a scene's preconditions and hooks: whenever a
scene requires or refers to a previous event in its own
narrated details, it is considered to be reincorporating that
earlier event. The second form of reincorporation occurs
through story context triggers: if an earlier scene set a
trigger that is involved in casting or recasting the current
action, then it means that the earlier event has some direct
relevance to the current action. We saw each of these kinds
of connection in the earlier Bluebeard example. (See
Figure 2.) Such a sequence of reincorporated events is
called a thread.

Marlinspike does not attempt to reincorporate every
action, however. Every event—whether scene or action—
includes a pre-defined import value which suggests how
dramatically exciting it is. For instance, the MANIPULATE
action (which represents such verbs as Take, Drop, and
Push) has a very low import while the MURDER action has
a very high import. Though it reincorporates whenever it
can, Marlinspike is only required to reincorporate events of

SCENE
['Bluebeard's
Wrath"]

precondition

Figure 2: A simple thread demonstrating the two types of reincorporation.

135

high import. In addition, all of an action's recasts (sub-
events) are considered to part of that event; therefore, the
whole event is considered to be reincorporated if any of its
sub-events is reincorporated.

Thus, a story starts with a beginning scene. This initial
thread can be extended by some action building upon a
context established by this scene. However, the player
might instead start a new thread by performing some
unrelated action of high import. In response, the drama
manager will select the next scene from those that it can
perform. It will choose the scene that extends the most
threads of high import, giving some preference to first
replying to the most recent action. Even if the drama
manager cannot immediately reincorporate the most recent
action, it may be able to do so later in the story.

When a scene plays, it will thread all the previous events
that it can. If the last event of more than one thread can
serve as preconditions for the scene, then the drama
manager can effectively splice two (or more) threads
together into one thread. Contrarily, if the system cannot
currently extend any existing thread, it may be forced to
fork an earlier thread event, thereby creating a new thread
which it will hopefully be able to splice back in later.

Thread 2: ACTION, == SCENE; = ACTION,

Thread 1: SCENE; == ACTION; == SCENE; \
Thread 4: SCENE,
Thread 3: SCENE; == ACTION, /

Figure 3: Thread map demonstrating a fork (producing Thread 3
from Thread 1) and a splice (producing Thread 4 from Threads 2
and 3)

In the Figure above, SCENE; is still pending. If its thread
(Thread 1) is not extended, then the story is poorly-formed,
as it contains unnecessary events. However, this evaluation
is tempered by the rule that not every action or scene needs
to be spliced into a thread, but only those of high import.

A story may end as soon as the drama manager can meet
the preconditions of an ending scene. However, if the
drama manager can play a different scene that will extend
threads of high import that would have been left pending
by the ending scene, it will continue the story instead.

Demeter: Blood in the Sky

Demeter is our prototype game intended to demonstrate the
feasibility of Marlinspike. It will also be used to formally
evaluate the notion that reincorporation increases the
perceived coherence of an interactive story. We will use
the interactive fiction system Inform to define the story
world objects and to process user input. Therefore, the
playing experience will be very much like that of
interactive fiction, where the user types in commands in
natural language and the system responds with text
describing the results of their actions. The exception to this
will be conversations with characters, which will be menu-

136

driven to improve system affordances in the absence of any
natural language processing beyond Inform's existing
parsing capabilities.

The story is set in an alternate 1923. Seven affluent
passengers—one of whom is the player's character—leave
England on a four-day trans-Atlantic flight aboard the
Zeppelin-class airship Demeter. However, just before the
dawn of the third day, the passengers are roused from their
beds by the captain on the intercom. The captain urges
them to bar the hatchway to their passenger gondola, for
someone... or something... is loose within the narrow
walkways of the Zeppelin above. The crew is dead, and the
captain himself is succumbing to blood loss. As the
intercom falls silent, the passengers are left to decide what
to do—and what to believe—as the Demeter drifts slowly
westwards over the Atlantic.

The number of verbs required for Demeter will be
comparable to interactive fiction games—about forty or so.
These will translate to approximately twenty different
actions. Scenes will vary in size, but most will result in
about a half-screen of text. We expect to need about sixty
scenes to produce an average story of twenty scenes in
length; such a story should take about thirty minutes to
play. Demeter has only a single beginning scene and about
six possible ending scenes.

Conclusion

Marlinspike's design strives to balance strong narrative
control with high user agency. The user is immersed in a
story world of simulated objects and characters. Their
deeds in this world can have different meanings and effects
based on the preceding story context, which is managed
through a very simple mechanism of triggers. The
Marlinspike drama manager then furthers the plot by using
customizable, pre-authored scenes, working to
reincorporate the user's significant actions and thereby
make them necessary to the resulting story. The game
Demeter is a specific implementation meant to demonstrate
Marlinspike's functionality in practice.

References

Aristotle. Poetics. Trans. S. H. Butcher. Ed. Francis
Fergusson. New York: Hill and Wang, 1999.

"Inform." <http://www.inform-fiction.org/informé6.html>

Johnstone, Keith. Impro: Improvisation and the Theatre.
New York: Routledge, 1979.

Tomaszewski, Zach, and Kim Binsted. "Marlinspike: An
Integrated Approach to Interactive Drama." Integrating
Technologies for Interactive Stories: Papers from the
INTETAIN 2008 Workshop. Playa del Carmen, Mexico. 7th
Jan 2008. <http://zach.tomaszewski.name/argax/pubs/
2008-TomaszewskiBinsted-Marlinspike.pdf>

