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Abstract
Path planning from road maps is a task that
may involve multiple goal interactions and
multiple ways of achieving a goal. This prob-
lem is recognized as a difficult problem solv-
ing task. In this domain it is particularly in-
teresting to explore learning techniques that
can improve the problem solver’s efficiency
both at plan generation and plan execution.
We want to study the problem from two par-
ticular novel angles: that of real execution in
an autonomous vehicle (instead of simulated
execution); and that of interspersing execu-
tion and replanning as an additional learn-
ing experience. This paper presents the ini-
tial work towards this goal, namely the inte-
gration of analogical reasoning with problem
solving when applied to the domain of path
planning from large real maps. We show how
the complexity of path planning is related to
multiple ways of achieving the goals. We re-
view the case representation and describe how
these cases are reused in path planning where
we interleave a breadth-first problem solving
search technique with analogical case replay.
Finally, we show empirical results using a real
road map.

Introduction
The motivation and long-term goal of this work is to in-
tegrate planning, real execution, and learning by anal-
ogy in the domain of traversing road maps to achieve
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multiple goals. PRODIGY, a planner and learner [Car-
bonell el al., 1990b], will be integrated with an au-
tonomous navigation vehicle which will execute the
plans to achieve multiple goals while driving in a city.
The planner will be given a road map, a set of goals,
and the initial location of the vehicle. It will generate
a near-optimal route that achieves all the goals. We
intend to use NAVLAB [Thorpe, 1990], an autonomous
vehicle driven by a set of neural networks to execute the
plan. NAVLAB will combine low-level perception with
the high-level reasoning of the plan which will guide it
in making more complex decisions such as which way to
turn at intersections in order to achieve the goals. Real
execution of the plan may lead to failures of planned
steps, such as a blocked road. The vehicle will trans-
mit this information to the planner for replanning and
learning.

Several researchers investigate the problem of inter-
leaving planning and execution [Hammond et al., 1990,
Agre and Chapman, 1987, McDermott, 1978]. In this
work we want to study the problem from two partic-
ular angles: that of real execution in an autonomous
vehicle (instead of simulated execution), and that of in-
terspersing execution and replanning as an additional
learning experience. We envision breaking the repre-
sentation gap between a high level reasoning planner
and a vehicle in the real-world executing the plan.

We report on preliminary work towards reaching this
motivating scenario. This paper focuses on the devel-
opment of a robust planning and learning system where
we accumulate a library of cases as planning episodes
to guide the initial planning as well as any replanning
needed at execution time.

Path planning for multiple goals involves a large
search space with a large set of alternative ways to
achieve each individual goal and many possible goal
interactions. We initially investigate the issues of de-
signing the domain using real road maps. Then we dis-
cuss how analogical reasoning applies to problem solv-
ing in this domain and show empirical results on the
integration with depth-first and breadth-first search
and discuss our on going implementation of best-first
search. We explore in particular how case reuse affects
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the planning time, since it is very important to reduce
the search space, especially when replanning during
execution.

Path Planning from Road Maps

Introduction
The problem examined in this paper is how to find a
path in a map when there are multiple goals. Goals
may consist of moving to different locations, getting
orders, and/or delivering packages.

Path planning in graphs has been addressed by a
variety of algorithms, such as Dijkstra’s shortest path
algorithm [Aho et al., 1974]. However, since our goal
is to implement this in autonomous vehicles, we want
to be able to interleave path planning with execution.
Paths will have to be modified and altered during driv-
ing (because of detours, for example) and, therefore,
we need a method which is more flexible than a short-
est path algorithm, and where we can reuse previous
experience as in [God et al., 1992].

Furthermore, our framework with real road maps di-
verges from the more general framework of path plan-
ning in arbitrary graphs. In fact, real road maps are
not static since they will have minor temporary varia-
tions which will only be known at execution time. The
path planning problem is also characterized by an ex-
tremely large number of alternative ways of reaching
target destinations, many of which will be equivalent
from a distance point of view. The emphasis of this
work is therefore on learning from experience in a real
environment rather than a simulated one. We use ana-
logical reasoning to enable the planner to accumulate
and reuse its planning experience.

Finally, our path planning process is not driven ex-
clusively by finding the path with the minimum dis-
tance between locations. Our aim is rather to find
acceptable solutions to multiple goals which can be
achieved in several alternative ways, a problem re-
ducible to the Hamiltonian circuit and therefore NP-
hard. Reusing previous experiences will reduce this
complexity.

The Domain Representation

When designing a domain representation, we consid-
ered how the representation would affect the ultimate
goal: using this planner in the autonomous vehicle. We
need a representation that adequately describes one
way streets, distances between the initial position and
the destination, and the direction of turns that will
need to be made.

Undirected graphs do not suffice since one way
streets can not be represented, and although directed
graphs would be able to handle this problem, there
is no easy way to represent turning direction. We
are therefore using a system which explicitly connects
one city block with the next one, thereby allowing
us to store all this required information. The streets

are therefore divided into multiple segments separated
by intersections. We recently found access to a de-
tailed database of the complete Pittsburgh street map
with more than 20,000 street segments. The database
includes the spatial coordinates of the intersections
which we will use to define the turnin~ direction be-
tween street segments [Bruegge etal.,1"992].

As an example, in our current simplified represen-
tation, the predicate (connected Streetl Street2
Distance Turning-direction) encodes state infor-
mation about the map. The domain is encoded
as a series of operators that describe possible ac-
tions. Currently we have operators that move agents
out of and into buildings, and move agents be-
tween streets. For example, the (gore-adjacent-street
<streetl> <street2> <distance> ) operator moves
the agent between two adjacent streets, namely from
<streetl> to <street2>. The preconditions of this op-
erator require that the two streets be connected, and
that the agent is at <streetl>. It also calculates the
total distance travelled by adding the new distance to
the current total.

Standard Means-End Analysis Search

Because of the reasons described in the introduc-
tion of previous section, we used the PRODIGY plan-
ning and learning system [Carbonell et al., 1990a].
PRODIOY’s nonlinear planner uses means-ends analysis
in its backward-chaining search procedure which can
reason about multiple goals and multiple alternative
operators relevant to the goals. This choice of opera-
tors amounts to multiple ways of trying to achieve the
same goal.

The planning reasoning cycle involves several deci-
sion points, namely: which goalto select from the set of
pending goals and subgoals; which operator to choose
to achieve a particular goal; which bindings to choose
to instantiate the chosen operator; and whether to ap-
ply an operator whose preconditions are satisfied or to
continue snbgoaling on a yet unachieved goal.

Dynamic goal selection from the set of pending goals
enables the planner to interleave plans, exploiting com-
mon subgoals and addressing issues of resource con-
tention. The planner returns a partially ordered plan
as a result of analyzing the dependencies among the
steps in the totally ordered solution found while plan-
ning.

In a typical road map, each street-section is con-
nected to at most eight other street-sections. This
branching factor varies between two as the lowest value
(i.e. a dead-end street) and eight as the highest (five-
way intersections at both ends). The branching factor
in the map used for our experiments ranges between
two and six, and averages about 4.4.

Therefore for a problem of travelling n city blocks,
search complexity is loosely bounded above by approx-
imately 8n. This number is reduced by the fact that
the average branching factor is lower, and also by elim-
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5 2134 3745
10 3.52 x 10~ 1.23 x 10~

15 5.80 × 10v 4.02 x 10TM

Table 1: Complexity of search space (in number of
nodes expanded) for travelling n city blocks

inating goal loops, for example <goto-adjacent-street
x y ~> followed by (goto-adjacent-street y z > [Car-
bonell et ai., 1992]. For even relatively small values
of n, however, reaching a solution by straight-forward
breadth-first search is an extremely slow and tedious
process (see Table 1).

Case Reuse Combined with Search

Given the complexity described above, we feel that ap-
plying analogy and case-based reasoning in the context
of map path planning is highly appropriate and even
necessary given the time restraints required when in-
terleaving planning with execution. We can reuse cases
in this context because one solution path will often be
a subpath of another problem. If the smaller prob-
lem has already been solved, we can then reuse it and
significantly reduce the amount of search necessary to
find the new solution.

Case Representation

In the original solution path, PRODIGY had to make
various decisions about which paths to follow. Of all
the nodes generated while solving a problem, only the
ones on the solution path are stored to create a case.
Extraneous nodes are discarded. Each relevant deci-
sion from the original solution (i.e. each node in the
solution path) and its justification is stored in LISP for-
mat in order to make reloading the case in a PRODIGY-
readable format very easy. Figure 1 contains an exam-
ple of how a goal node would be stored. Essentially,
it maintains all pointers to related nodes in the search
tree (which operators introduced it, any other applica-
ble operators left, remaining goals). A complete case
contains nodes of a similar format describing decisions
and justifications for decisions made at operator nodes,
binding nodes and applied operator nodes.

(serf (p4::nexus-children (find-node 
(list (p4::make-goal-node

:name 5
:parent (find-node 4)
:goal (p4::instantiate-consed-literal

’(AT BARTLETT-2 JANE ))
:introducing-operators

(list (find-node 4) ))))
Figure h A sketch of a goal node in a case.

Note that a case is not used as a simple "macro-
operator" [Fikes and Nilsson, 1971]. A case is selected
based on a partial match to a new problem solving
situation. Hence, as opposed to a macro-operator, a
case guides and does not dictate the reconstruction pro-
cess. In addition, intermediate decisions corresponding
to choices internal to each case can be bypassed or
adapted if their justifications no longer hold.

Case Reusage

We follow the case reuse strategy as developed in
[Veloso, 1992]. The replay technique involves a closely
coupled interaction between planning using the domain
theory, domain operators, and similar cases which are
derivational traces of both successful and failed deci-
sions in past planning episodes. The replay mechanism
involves a reinterpretation of the decision justifications
in the context of the new problem, reusing past deci-
sions when the justifications hold true, and replanning
using the domain theory when the transfer fails.

Once one (or more) case is is found that is similar
to the new problem solving situation, it is ready to be
reused. The planner is called and given the the set
of operators and the similar case as input. The replay
algorithm is implemented by interrupting the planning
algorithm at its decision points so that it may make
choices similar to the ones from the guiding case.

Until there is a match between a subgoal of the
case and one of the candidate goals of the new prob-
lem, PRODIGY does breadth-first-search to maximize
the chance that a match will be found with minimum
depth. As soon as this match has been found, PRODIGY
immediately follows the case using depth-first-search,
and does not expand the rest of the nodes at the
same level as the matched node. Once case nodes
for which similarity justifications hold have been ex-
hausted, PRODIGY returns to breadth-first-search until
its main goal state has been achieved (see Figure 2).
This method allows us not only to minimize additional
searching, but also to solve problems in which neither
the goal state nor the initial state are the same as the
original case.

Note that, optimality of paths is not necessarily pre-
served by analogical transfer. The merging of optimal
subplans under a satisficing approach may result in a
non-optimal new plan. When there are multiple opera-
tors to achieve goals, there is no known technique that
both tries to maximize the reuse of previous experience
and also maximize the quality of the new similar solu-
tion. We plan to investigate an exploration technique
that allows untried or unjustified steps in the new con-
text to be searched, diverging from the direct reuse
of the past experience. This exploratory search can be
conducted when the planner is not otherwise occupied.
It should be noted however, that we are not explicitly
concerned with always finding an optimal solution, but
rather with finding a reasonable solution.
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¯ Node not matched

O Node matched in case

® Goal Node

Reusing a case of depth 4, a new

problem of depth 6 is reduced to
3

~-~i=0 4"4i % 3 + 4.4 ---- 32 nodes
¯/ ~ from about 7250 nodes

Figure 2: PRODIGY’s node expansion tree when prob-
lem solving using a case

Experiments using a Real Map
The Map
The map we used is that of Pittsburgh’s Squirrel Hill
district, adjacent to Carnegie Mellon University and
typical of a city environment in which the autonomous
vehicle might be used. Besides the residential housing,
there is a small shopping strip in the area, a university
and a golf course, giving the vehicle a reasonably large
region in which to run errands. The region contains
two one-way streets (Darlington-5 and 6, and Bartlett-
4 and 5) and several dead-end streets. This diversity,
combined with the forty-eight intersections, causes the
search space to be highly complex. Figure 3 shows a
graphical version of the current representation of the
map.

Results

The experiments we ran were constructed by extending
a base case involving two operators. There were eight
composable problems built around each base case: ex-
tending the base ease by one operator (street) at the
initial point, extending it by two operators at the initial
point, and then each of those three cases were extended
by one and two operators at the goal. Base cases were
randomly chosen from the map of Squirrel Hill, and
the composable problems were manually selected for
their proximity to the base case.

We first ran each problem with a breadth-first search
with no analogy until the solution was found, and then
ran the same problem using depth-first search with
the minimal depth-bound necessary to find a solution.
Once these two runs were complete, we ran the same
problem using analogy with all the cases that formed
sub-paths to the solution.

We expected that the total number of nodes ex-
~-~d 4 4i where d =panded would be reduced from /-i=0 ¯

depth of the search, to a number Order of ~-~/s=0 4.4i +

E
C "~-E/=I 4.4j where S = the number of operators
added at the start, C = number of nodes in the case’s
solution path, E = number of operators by which the
case was extended at the end, and S+C+(E-1) = 

Breadth-first search and depth-first search behaved
as expected. Breadth-first search for a solution involv-
ing six operators required between 6,600 and 30,000
nodes, averaging about 15,000. The number of nodes
expanded in a depth-first search ranged from finding
the goal in the minimum number of nodes possible, to
finding the goal with nearly the same number of nodes
as the equivalent breadth-first search.

In all the problems solved by reusing cases, the num-
ber of nodes expanded was reduced as drastically as
expected. Figure 4 shows a graph of our results, where
’IS’ (2S) represent problems built upon a case which
required adding one (two) <goto-adjacent-street> op-
erators at the Start and ’IE’ (2E) represent problems
built upon a case which required adding one (two) op-
erators at the End in order to reach a solution.
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Figure 4: Problem Solving using BFS as compared to
case reusage. Note that the numbers are four times
greater than the number of operators because PRODIGY
creates four nodes per operator.

The way PRODIGY applies operators in its means-
ends analysis search accounts for the asymmetry be-
tween adding one (two) step at the beginning of a case
and adding one (two) at the end. At the beginning
of the search, PRODIGY will stop expanding nodes as
soon as it finds a match. This situation explains why
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Figure 3: The Map: Pittsburgh’s Squirrel Hill
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’IS’ cases so closely approximated the minimum num-
ber of nodes possible to find a solution. Once the case
has been exhausted, PRODIGY continues with breadth-
first-search. Even if it can apply an operator on one
branch of the search, it may not yet have reached the
final goal. Meanwhile, the other branches of the search
tree will still have subgoals to expand, and thereby cre-
ate more nodes at the end of the problem than at the
start.

The number of nodes expanded at the end of the
case so dominated the number of nodes expanded at
the beginning that we combined all the ’IE’ cases and
all the ’2E’ cases for the purposes of simplifying the
graph.

We also ran a few experiments in which the case
used did not form a proper sub-path of the optimal so-
lution of the new problem, generating a solution that
was non-optimal by one or two operators. The num-
ber of nodes expanded by PRODIGY Was approximately
double that of the proper sub-path problems, but even
the most difficult were solved in less than one hundred
nodes; several orders of magnitude less than the equiv-
alent breadth-first-search.

Use of analogy instead of breadth-first-search re-
suited in a reduction in computation time from several
hours to under a minute for longer problems. This
fact indicates that this system will be usable in the
real-time environment of interleaving planning and ex-
ecution.

Notice that the representation used and the exper-
iments run are of reduced complexity. In this initial
phase we focused on developing and validating the ba-
sic framework. Refinements and extensions of the ap-
proach will result from the integration with the real
autonomous vehicle.

Discussion and Future Work

The paper presents our initial accomplishments to-
wards having a planner efficiently plan paths in a real
road map. We implemented a real map of a consid-
erably large part of Pittsburgh’s Squirrel Hill district.
Case reusage and analogical reasoning in path plan-
ning with road maps is compatible with human intu-
ition since not only is the road map the same in each
problem and planning situations similar, but finding
solutions requires a lot of computation and search. We
have shown in this paper that reusing cases in this con-
text is feasible and efficient.

We are currently developing a large case library
and organizing it for efficient retrieval [Doorenbos and
Veloso, 1993]. We are using spatial features of the
maps for case indexation. We are extending the cases
in the library by planning with more operators, adding
multiple goals, and generating alternative plans.

Secondly, since plan quality might not be preserved
by analogical reasoning with extension and adaptations
of problems, we plan to develop an exploratory mode
within the system. This addition will allow us to not

only ensure that optimal solutions are found for prob-
lems solved using analogy, but also to store multiple
optimal solution paths for one problem.

In this domain we will also be investigating the merg-
ing of previous solutions so that problems can be solved
using more than one case, either by directly linking
several paths, or by merging subgoals [Veloso, 1993].

Introducing abstraction planning to this domain is
also in our research agenda. We will extend the re-use
and generalization of cases to different levels of ab-
straction, for example highway movement as opposed
to major streets as opposed to minor streets. Another
possible method of abstracting this kind of problem
is by moving between grid squares (i.e. A-3 to J-6).
Since abstraction has already been implemented within
PRODIGY [Knoblock, 1991], we envision a smooth inte-
gration.

Finally, our immediate focus is to connect the plan-
ner to the autonomous vehicle and set up the appro-
priate communication framework.
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