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Abstract

Advance Traffic Management Systems (ATMS) must
be able to respond to existing and predicted traffic con-
ditions if they are to address the demands of the 1990’s.
Artificial intelligence and neural network are promising
technologies that provide intelligent, adaptive perform-
ance in a variety of application domains. This paper
describes two separate neural network systems that have
been developed for integration into a ATMS blackboard
architecture [Gilmore et al., 1993a]. The first system is an
adaptive traffic signal light controller based upon the
Hopfield neural network model, while the second system
is a backpropagation model trained to predict urban traffic
congestion. Each of these models are presented in detail
with results attained utilizing a discrete traffic simulation
shown to illustrate their performance.

1 Introduction

It has been estimated that American drivers annually
spend over two billion hours in traffic jams resulting in an
estimated $80 billion loss to the U.S. economy. With this
total expected to grow five fold by the year 2010 and annual
traffic fatalities in the United States exceeding 35,000, the
development of advanced traffic management systems
has become a major initiative in transportation agencies
around the world.

The goal of an ATMS is to optimally manage existing
transportation resources through the use of adaptive
control systems in order to maximize the efficiency and

usefulness of all transportation modes. The intelligent,

adaptive control aspects of this problem are attuned to the

features of neural network systems. Neural networks

[Anderson et al., 1988] are computational structures that

model simple biological processes usually associated with

the human brain. Adaptable and trainable, they are

massively parallel systems capable of learning from

positive and negative reinforcement.

The basic element in a neural network is the neuron

(Figure 1). Neurons receive input pulses (1+) from inter-

connections with other neurons in the network. These
interconnections are weighted (W+) based upon their

contribution to the neuron. Weighted interconnections are

summed internally to the neuron and compared to a

threshold value. If the threshold value is exceeded, a

binary output pulse (O+) is transmitted, otherwise the

neuron exhibits no output value. A variety of specialized

neural network models based upon this simple neuron

structure have been developed.
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This paper describes the application of neural network

to two ATMS functions. First, an intelligent neural

network-base signal light control system capable of
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adaptively optimizing traffic flow in urban areas is pres-
ented. Second, a neural network model capable of
learning how to accurately predict traffic congestion is
discussed.

Current signal control systems, such as the Los
Angeles Automated Traffic Surveillance and Control
(ATSAC), use responsive control [Rowe, 1991]. 
comparing actual surveillance data to available model

data, a timing plan is selected. This approach is an
improvement over the time-of-day timing plan in instances
where traffic varies each day. The proposed neural
network approach extends the ATSAC philosophy further
by applying a neural network optimization model to actual
traffic flow data to determine the signal light settings that
will produce the most efficient traffic flow in a special event
area. Utilizing information on street segment capacities,
traffic flow rates, and potential flow capacities, the network
model examines the effects of signal light settings in

relation to the traffic flow away from a designated area.
The system "settles" on control settings that maximize the
flow and adaptively changes the signal settings based
upon changes in street segment traffic density.

Current developments in advanced traffic control
techniques are giving rise to an increasing requirement for
reliable near-future forecasts of traffic flow. These pre-
dictions are required in order to attain the background
information for solving traffic congestion before it develops
using methods such as "gating" or "dynamic route guid-
ance". Existing systems such as SCOOT [Robertson et
al., 1991] only react to present traffic patterns and, by~

themselves, do not prevent congestion from occurring.
Conventional traffic modeling and simulation procedures
can be applied to this problem but have a number of
shortcomings, particularly in real-time applications.

Many researchers have demonstrated that neural
network methods based on a back-propagation algorithm
are able to deal with complicated nonlinear forecasting
tasks in stock prices, electricity demand, and water supply
[Canu et al., 1990]. By specifying input values representing
important traffic congestion attributes, a neural network
architecture capable of capturing the underlying charac-
teristics of the transportation domain has been developed.

This neural network model is able to learn based upon

data from previous congestion occurences and has pro-
duced encouraging results in forecasting congestion on

surface streets.

2 Traffic Signal Light Controller

At first glance, a traffic flow system appears to be an
interwoven and connected array of road sections whose
traffic flow is determined by a series of traffic lights. The
control of these traffic lights is vital in order to allow traffic
to flow throughout the system with minimal delay. A neural

network approach to the control of signals at traffic
intersections is proposed. Because the optimal traffic
signal configuration is not available a priori, a supervised
learning architectu re such as a back-propagation network

is not suitable. The neural net architecture should do
unsupervised leaming in an optimization network. The

Hopfield neural network model was chosen because of its
match to the traffic signal control problem.

The main parameter in Hopfield is the energy function
which is distributively defined by the connection archi-
tecture among the neurons and the weights assigned to
each connection. The Hopfield model and the

traffic-derived energy function it utilizes for intelligent
signal light control are described in the following sub-
sections.

2.1 The Hopfield Model

The Hopfield model is an additive neural network
model. This means that the individual weighted inputs to

a neuron are added together to determine the total
activation of neuron. This activation is then passed

through an output function to determine an output value.

The Hopfield model uses a fully interconnected net-
workof neuronstodescendonto an energy function. Since

a discrete time simulation is being used, a discrete-time
model was adopted. The dynamics of the discrete-time
Hopfield Net are given by:

iV
Ui = .i__~1 Ti,jV j d- Ii

v, = g(u,)
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where

T(I,j) are the interconnection weights,
I(i) are the input biases,

U(i) are the internal states,
V(i) are the neuron outputs, and
g(x) is a nonlinear activation function which can 

taken as

which approaches a hard limiter as Xo tends to zero. An
asynchronous update rule was used which means that
neurons are randomly chosen to be updated. This
asynchronous updating scheme tends to greatly reduce
oscillatory or wandering behavior typical of synchronous
updating schemes.

Hopfield and Tank [Hopfield et al., 1984 and 1985]
show that the dynamics of this model favors state trans-
itions that minimize the energy function

1 N N N
E =-~- )-’. Y, T~ j.V~Vj- Z IiV/

~i=lj=l ’ i=l

where

Ti, j are the interconnection weights,
Vs are the neuron outputs,
Ii are the input biases, and
N is the number of signals,

so that the network gradually settles into a minima of this
function. The difficulty to any application using a Hopfield
Net is to determine a suitable energy function that the
network will descend on.

2.2 Neural Signal Controller

The goal of traffic management is to maximize the flow
of traffic while minimizing incidents and delays in aregion.
Controlling the timing of signals to increase traffic flow is

one method of supporting this goal. The management of
traffic flow by a system utilizing the control of signals

appears to directly map into a Hopfield network. Since
traffic lights have two states, each traffic signal can be

modeled as an individual neuron (V0 in a Hopfield neural

network. If a light is on, the traffic will flow in the E-W

direction at that intersection, otherwise traffic flows in the
N-S direction. I, can be viewed as the input potential into

a node of the network with T~,i viewed as the connections
between traffic lights.

The first step in any application of the Hopfield network

is the construction of an energy function. The system’s
primary objective is to disperse traffic away from a special

event in the shortest amount of time. In an abstract sense,
one method of dispersing traffic is to route vehicles from

road segments containing a large number of vehicles and
a high capacity percentage (vehicle/capacity) onto road
segments with a smaller number of vehicles and a lower

capacity percentage. This can be achieved by [a]
changing signal lights based on the potential of a given

traffic light to increase flow, and [b] synchronizing signals
with adjacent traffic lights to maximize overall system

throughput.

Initial attempts at creating an energy function that
addresses these criteria concentrated on examining the

number of vehicles on roadways to determine optimal
signal light configurations. Experimentation soon indi-

cated that the percentage of the capacity of an incoming
roadway was a better indicator for determining the state
of any given traffic signal. Research into the integration of

road capacity percentages into the energy equation was

then undertaken.

First, a road segment nearing its capacity will trigger

a signal to turn on. Second, optimal flow tends to favor
near capacity road sections directing their vehicles onto

road sections with a lower percentage of capacity.
Because of this, a look at the difference of percentages
was adopted. The potential of a given signal for traffic flow

could be determined by adding the differences between

the traffic capacity percentages into the signal and the
percentages of capacity of the flow away from the inter-

section. Thus, the network tends to turn traffic lights on
when they have a higher potential for large traffic flow.
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Figure 2. Traffic Signal Control Energy Function Derivation

The next step in developing the energy equation was
to address signal light synchronization. If a signal is on,
adjacent signals should tend to turn on to further increase
traffic flow. A term was added to the energy function to
reflect this tendency of an adjacent traffic light to turn green
based on the potential of adjacent traffic. With this
addition, the final energy function specifying the optimal
control of the traffic lights in the simulation was defined as:

N (" "~(" p. M L

,:~ Ll+t~)t, s:~ ’J ,:l , J

where

N is the number of traffic lights,
M & L are the # of outgoing roadways,
P(/) is the priority of a traffic light 
t(i) is the time that traffic light i has been on,
C(b) is the capacity percent of road section 
D(a)(b(j)) is the difference cap(a)-cap(b(j)),
Ill is the output of neuron i representing traffic light i,
r/ is the % of vehicles turning from a onto b(j), 

Sk is the % of vehicles turning from b(j) onto c(k).

The numerator of the term P,/(1 +t,) provides a prioritization
weight of individual traffic lights in the simulation, while the
denominator negatively weights traffic lights that have

been on for a long time. The energy function tends to favor
signal lights with large capacities flowing through their

intersections. The next term of the energy equation favors
lights which have high potential flow out of the intersection
and into the next light. The final portion of the energy
equation addresses the connection between secondary
signals by measuring their contribution to the overall
primary signals potential traffic flow. If one signal is on,

the equation tends adjust signals to also settle into on
states. A symbolic representation of energy function
components is illustrated in Figure 2.

2.3 Results

The graphical interface displays the current traffic
flows, capacities, and potentials for each street segment
on a high resolution color monitor for viewing by the user.
Figure 3. is an example of the neural network traffic signal
controller display for the Georgia Dome and Omni sports

arenas. North, south and east of the Dome and the Omni
are the parking lots for spectators attending arena events.

Each lot has a number indicating the number of vehicles
currently in the lot. For example, the lot north of the Dome
currently contains 757 vehicles.

Traffic data was generated using a discrete traffic
simulator [Homburger, 1982] of downtown Atlanta. This

area was selected because it is the site for the 1996
Summer Olympics and presents the most challenging
traffic management problem the United States will witness
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in the 1990’s. The total number of vehicles on each street
segment is also indicated by a numeric value with the top
number indicating traffic flow to the right and the bottom.
nu mber traffic flowing to the left. A single number indicates
a one way street.

Street lights are designated by a dash in an intersection
with the flow of traffic (e.g., the green light) moving in the
same direction as the dash. For example, the signal light
at the intersection of International and Techwood is
currently green on International, but red on International
at its intersection with Spring Street. The clock in the top
right hand corner displays the actual travel time the
simulation has been running (e.g. one minutes in this
example).

Figure 4. indicates the flow of traffic after ten minutes
of driving time. This example has assumed that the only
traffic flow in the area was from the arena parking lots.
This was done to illustrate multiple venue traffic flow
interaction. The figure shows that within ten minutes after
the Dome and Omni events have ended traffic is efficiently
being disbursed.

The graphical user interface has been designed to
provide transportation engineers with several levels of
abstraction during system operation. Figure 5. is a display
of a larger area of downtown Atlanta, but with only primary
streets indicated. The Fulton County Stadium area pre-
viously shown can be seen in less detail in the bottom right

protion of this figure. ATMS operators may select the
granularity of display they wish to view based upon their
current interests.

3 Traffic Congestion Forecasting

An ATMS must not only control current traffic, but also
predict where congestion will occur. Predicting congestion
so that preventive actions may be taken in advance will
greatly alleviate traffic gridlocks. This section describes
the results achieved utilizing a back-propagation neural
network algorithm to predict the traffic flow on surface¯

street in metropolitan areas. The neural network is trained
in two phases. First, an initial learning phase determines
the most appropriate connecting weights for data on a
typical business day. Second, adaptive learning is

employed to learn the special case traffic classes and

adapt the weights to the present situation. In the adaptive
learning phase, the error function is computed by placing

a restriction on the weight changes so that the knowledge

learned through the initial learning phase is retained. The
prototype system is tested through computer simulations,
with results indicating that the application of the neural

networks to traffic congestion forecasting is promising.

3.1 Neural Network For Forecasting

A multi-layered network consisting of three completely

connected layers (i.e. the input layer, the hidden layer, and
the outer layer) was developed to address the traffic

forecasting problem. The learning was achieved using a
back-propagation algorithm with a sigmoid transfer func-

tion. This function was very suitable to the traffic problem
as traffic flows always possess a saturation characteristic.

The number of input neurons used in the initial pro-

totype network was 48. These were composed of the

target flow (T in Figure 6) and three inflows into the
simulated area (11, 12, and Is) which are closely relevant 
the target flow. Each variable was normalized to [0,1] by

using the capacity percentage of the road for the target

flow and the maximum values of observed data for inflows,
respectively. It should be noted that all data was sampled

every 5 minutes, though time sampling in the systems is
variable. The outputs are target flows in the next 30 minute

period, thus 6 neurons are required. Although there is
much difficulty in determining the number of neurons for

the hidden layer, 12 neurons were chosen without any

effort for optimization in this study.

The forecasting algorithm contains two phases. First,
the learning phase is used to compute the optimal weights

of the neural network for a typical pattern. The second is
an adaptive forecasting phase to adapt the weights to the

present traffic flows and forecast future congestion.

The training data consisted of traffic flow histories from

a typical business day, and the network connecting
weights were computed by following the standard back-

propagation learning rule described below:
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where

1 ~(gt - 0,)2

Y, = t ’h desired output

Ot = t ’h actual output

Once the initial learning is completed, the network is
ready for the adaptive and forecasting process. The
connecting weights are corrected according to the fore-
casting error of the last few data through back-
propagation. In order to retain the knowledge learned in
the initial learning phase, an error function with a term to
suppress changes of weights was implemented:

E =Eo+kE~

where

Eo =I ~(y,-o,)2

1 -(Wii-W°,’~2

W°i = initial weight

AW~,~ = maximum value of I Wii - W°J i I

In addition, a shifting learning method was used to take

the latest available data into account. The network was
adapted to data for the past 2 hours, and would then
forecasttrafficflowforthe next hour. Inthe learningperiod,
all of outputs corresponding to input data (up to the last
30 minutes) are available for training data. A portion of
the outputs corresponding to input data for the last 30
minutes, however, are not available. This approach

adapted all the weights to the training data (except for the
last 30 minutes) and only the weights between the avail-

able outputs and the hidden layer to the training data from
the last 30 minutes. After the adaptation process, a traffic
flow forecast for the next 30 minutes is generated.

3.2 Results

The data described above was used for the initial
learning. In order to generate test data, random fluctua-

tions (+20%) were added to the inflow traffic patterns
shown in Figure 7, and random fluctuations were also

added to splitting rates of all flows. Figure 8 shows traffic
patterns as the simulation results. Three forecasting

criteria, PAAE, standard deviation of absolute error, and
PITP, were used to evaluate the system performance
[Srirengan et el., 1991]. PAAE (Percentage Average

Absolute Error) and standard deviation of absolute error
are calculated as

PAAE = (l/N) Y. I Yt -O, I /(target range)*lO0
t

STDEV =’~/(1/N)~( IYt-O, I-(1/N)Y,, I Yt-O, I )2

where note that target range is equal to 1 and therefore
PAAE is equivalent to

O/N) T. I y,- o, I.
t

PITP (Percentage of Incorrect Turning Points) is the
percentage of times the prediction of the system is an
increase (or decrease) in a period when in the actual result
is the opposite.

Three cases (as shown in Figure 9.) were tested for
comparison: the case without the adaptive learning (Case
1 ), the case with the adaptive learning using the standard
error function (Case 2), and the case with the adaptive
learning using the proposed error function (Case 3). In all

instances, the correct trend was forecasted in more than
85% of the time for the test set. Although the forecast
accuracy between Cases 1 and 2 did not always improve,
it was clearly always improved in Case 3. This indicates
that the error function was successful in guiding the
network’s adaptive learning. In addition, it appears that
the forecast accuracy of the next 5 minutes is superior and

forecast of the next 30 minutes is poorest in all cases. This
is because the data for the next 5 minutes has a stronger

correlation with the input data, as compared to data for the
next 30 minutes data.
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4 Summary

Two applications of neural networks in advance traffic

management have been presented. The intelligent traffic
signal control has been developed and applied to several
special case traffic situations including the multiple venue
traffic congestion anticipated during the 1996 Olympics in
Atlanta. The traffic congestion forecasting system has
shown promise in predicting congestion based upon

learning the factors that contribute to traffic jams and
gridlocks.

Developed independently, research is continuing to

integrate these systems into an ATMS blackboard archi-
tecture containing additional subsystems for incident
detection, emergency vehicle management, ramp
metering, and traffic monitoring. In this configuration

results of predicted traffic congestion would be posted to
a blackboard data structure. This action would activate

the traffic signal control system which would attempt to
divert traffic from the predicted congestion area. A more

detailed interaction of the ATMS blackboard knowledge

sources can be found in [Gilmore et al., 1993a]
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