
Knowledge Base Reduction for Verifying Rule Bases
Containing Equations

Keith Williamson, Mark Dahl
Boeing Computer Services
P.O. Box 24346, MS 7L-44

Seattle, WA 98124-0346
kew@atc.boeing.com

Abstract

The use of Knowledge Base Reduction to verify
rule bases was first developed for propositional
rule bases, and then extended to handle quanti-
fied variables in rules. However, these techniques
did not reason about equations. This paper gives
a formal specification of KB-Reducer3, an analysis
tool for rule bases containing equations. The al-
gorithm for KB-Reducer3 is described, and a brief
discussion on its use and limitations is provided.

Introduction
The use of a Knowledge Base Reduction (KBR) ap-
proach to verifying rule bases was originally described
in (Ginsberg 1988). This approach was first devel-
oped for propositional rule bases, and then extended
to handle quantified variables in rules (Ginsberg 
Williamson 1989). However, this latter extension did
not reason about equations. As described in (Dahl 
Williamson 1992), there was a need at Boeing to have
this capability. This paper formalizes KB-Reducer3,
an analysis tool for rule bases containing equations.
We will begin by defining KBR knowledge bases and
inference in those knowledge bases. Next we define
consistency, redundancy, and completeness. We then
present an algorithm that tries to determine if a KBR
knowledge base is consistent, irredundant, and com-
plete. Finally, we briefly describe the actual use of
KB-Reducer3. For a more complete description of this
use, the reader is referred to (Dahl & Williamson 1993).

Knowledge Bases
A familiarity with first order logic is assumed; see
(Genesereth & Nilsson 1987), for example. Let P1, P2,
P3, V1, V2, and V3 be disjoint sets of variable symbols.
P1, P2, and P3 contain propositional variables, while
V1, V2, and V3 contain non-propositional variables.
Let Inputs = <P1,VI>, Intermediates -- <P2,V2>,
Outputs = <P3,V3>, and S = <Inputs, Intermedi-
ates, Outputs>. A kbr-wff is a well-formed formula
of first-order logic with equality and arithmetic, but
no quantifiers. A kbr-wff over S is a kbr-wff where

variable symbols are taken from S. A kbr-expression
over S is a function term where variable symbols are
taken from (V1 U V2 U V3). A kbr-rule over S is 
kbr-wff over S of one of the following forms:

Condition ---* Vat = Expr
Condition --* Lit

where Condition is a kbr-wff over S, Var is in (V2 
V3), Expr is a kbr-expression over S, and Lit is a literal
over (P2 U P3). A kbr-domain over S is a two-tuple
of the form <Var,{C1,C2,...,Cn}>, where Var is in (V2
U V3), and each Ci is a constant symbol.

Let D be a set of kbr-domains over S, R be a conjunc-
tion of kbr-rules over S, C be a satisfiable conjunction
of kbr-wffs over Inputs, and KB = < S, D, R, C >. We
call KB a KBR knowledge base, D the domain, R
the rules, and C the constraints. An input-state
for KB is a logical interpretation of the symbols in In-
puts. An input-state i is valid for KB iff i satisfies C.
A conclusion for KB is a kbr-wff over Outputs of one
of the two forms (Var = Coast) or (Lit), where Vat is
in V3, Const is a constant, and Lit is a literal over P3.
Let V be the set of all valid input-states for KB, and
K be the set of all conclusions for KB. For any i in V
and any k in K, let (< KB, i > b k) denote the infer-
ence, under KB, of k from i. The inference mechanism
associated with KBR knowledge bases has the follow-
ing properties: (1) it uses back-chaining, (2) it 
monotonic reasoning, and (3) it uses standard logical
semantics for negation (it., it does not use "negation
as failure" as Prolog does).

In the following example, KB = < S, D, R, C > is
a knowledge base:

Inputs =< {pl,p2,p3}, {ul, u2, u3} >
Intermediates =< {ql, q2, q3}, {vl, v2, v3} >
Output -< {rl, r2, r3}, {wl, w2, w3} >
S =< Inputs, Intermediates, Outputs >
D = {< vl, {1,2,3,4} >,< w2, {10,20} >}
R = (pl A -~p2 A (ul < u2 V u2 < u3) --* ql)A

(p2A u2 > 0-* vl = u2)A
((p3 A ql) V vX = 1 -* -~rl)A
(vl = 1 A -,p3 ---* wl = ul + u2 + u3)A
(vl = 1 A pl --+ r2)

c = (ul > 0) ̂  (u2 = 0 v u3 = 

59

From: AAAI Technical Report WS-93-05. Compilation copyright © 1993, AAAI (www.aaai.org). All rights reserved. 



The input state described by (pl A p2 A -~p3 A ul 
5Au2 = 1 Au3 = 0) is a valid input state since
it satisfies C. However, the input state described by
(plAp2A~p3Aul "" --hAu2 = 1Au3 = 0) is not a valid
input state since it does not satisfy ul > 0. Some of
the conclusions for this KB are: {rl, -~rl, r2,-~r2, wl =
0, wl = 1}. As an example of inference in KBR knowl-
edge bases, under the valid input state described by
(plAp2A-~p3Aul = 5Au2 = 1Au3 = 0) the following
conclusions can be inferred: {-~rl, r2, wl = 6}.

Anomalies in Knowledge Bases
We can define three types of anomalies for KBR knowl-
edge bases. It should be noted that evidence of these
anomalies in a real knowledge base is often indicative
of a more fundamental problem. KB-Reducer3 points
out anomalies, but it is the responsibility of a knowl-
edge base developer or maintainer to decide not only
what caused the anomaly but how to fix the underly-
ing problem. For a more complete discussion of this
issue, see (Dahl & Williamson 1993).

Consistency
KB is said to be inconsistent iff there is a p in V, a kl
in K, and a k2 in K, such that (1) (< KB, p > b kl),
(2) (< gB, p > t- k2), and (3) (klAk2)is unsatisfiable.
KB is consistent iff it is not inconsistent. Consider
the following examples. The rules (pl A p2 ---+ rl) 
(p2 ~ --rl) lead to an inconsistency since any input
state where (pl A p2) is true leads to the inference 
(rl A--rl) which is unsatisfiable. The rules (pl A ul 
50 --* u2 = 1) A (p2 A ul > 100 ---+ u2 = 2) also lead
to an inconsistency since any input states satisfying
(pl Ap2 A ul > 100) leads to (u2 = 1 A u2 = 2). 
inconsistency could result from a more complex chain
of reasoning. For example, given the rules (pl A ul 
50 --. ql) ^ (ql ^ p2 --. rl) ^ (pl ̂  ul > 100 --. ^
(q2 A p3 --+ -~rl), any input state satisfying (pl A p2 
p3 A ul > 100) leads to (rl A --rl).

Redundancy

Let KB1 = <S,D,R1,C> and KB2 = <S,D,R2,C>
be KBR knowledge bases. KB1 and KB2 are said
to be equivalent iff for all p in V, for all k in K,
(< KBI,p > F- k) iff (< KB2,p > }- k); that is, they
have the same input/output behaviour (on valid input-
states). For any kbr-rule r in R, let (R-r) denote 
conjunction formed by removing r from R. KB is re-
dundant iff there is some kbr-rule r in R such that
KB is equivalent to <S,D,(R-r),C>. KB is irredun-
dant iff it is not redundant. For example, a knowledge
base containing the rules (pl ---+ rl) A (pl A p2 --* 
is redundant, since the second rule can be removed
while maintaining the input/output behaviour of the
knowledge base. As another example, consider the
knowledge base whose rules are: (pl ~ rl) A (pl
ql) A (pl ~ q2) A (ql A q2 ~ rl). Here there is redun-

dancy since either the first or last rule can be removed
while maintaining the input/output behaviour.

Completeness

Let <v,(cl,c2,...,cn}> be a member of D. KB is said
to be complete with respect to variable v iff for
all c in {cl,c2,...,cn}, there exists a p in V such that
(< KB,p > F- v = c). KB is said to be complete ifffor
all variables v that have a domain in D, KB is complete
with respect to variable v. As an example, consider
the domain < wl, {1,2,3,4,5} > and the rules: (pl --+
wl = 1) A(p2--* wl = 2) A(p3---+ wl = 3). 
rules are not complete with respect to variable wl since
there is no input state that would lead to the inference
of either (wl -- 4) or (wl = 5). On the other hand, 
knowledge base consisting of the rule: (pl --* wl = ul)
is complete with respect to wl since, in the absence of
any constraints, ul can take on the values {1, 2, 3, 4, 5}.

KB-Reducer3 Procedure
Now that we have defined knowledge bases and their
anomalies, we will define a procedure that analyzes
a knowledge base. The KB-Reducer3 procedure first
computes the labels of a knowledge base, and then
analyzes those labels looking for the various types of
anomalies. Before describing this procedure, we need
some more definitions.

Generalized Conclusions and Labels

A generalized conclusion for KB is a kbr-wff of the
form (Var = Expr) or (Lit), where Var is in V3, Expr
is a kbr-expression over Inputs, and Lit is a literal over
P3. Let GK be the set of generalized conclusions, and
g be some element of GK. For any input-state i, let
g(i) denote the conclusion resulting from the arith-
metic evaluation of the expression obtained after sub-
stituting the values given in i for the variables in g. A
literal over Inputs is a literal formed from Inputs and
the standard arithmetic relations and functions (eg.,
=, >, <, +, -,.,/, etc.). A product term over In-
puts is a conjunction of literals over Inputs. A kbr-wff
p is an impllcant for g given KB iff (1) p is a product
term over Inputs, (2) (C A p) is satisfiable, and (3) 
all v in V, if v satisfies p then (< KB, v > t- g(v)). Let
imp(g~KB) denote the set of implicants for g given
KB. A kbr-wff p is a prime implicant for g given
in iff p is in imp(g,KB) and for all q in imp(g,iB),
if (p ~ q) then (q ~ p). A prime-implicant for 
also called an environment for g. Syntactically, a
prime-implicant is a minimal implicant; semantically,
a prime-implicant contains a maximal set of models.
The label for g is the set of environments for g. A
label can be thought of as being in minimal disjunc-
tive normal form (dnf). The label for g is a succinct
representation of the set of input states that leads to
the derivation of the conclusions described by g. As an
example, consider the rules:

6O



I~.A p ~ s)A
--~ s)A

{:
> 0"-~ y-- z)A
---+ y = 1)A

(y>z+lO~t=y)

The following labels describe this rule base:

label(s) = 
label(y = x) = x > 
label(y = 1) = 
label(t = x) = (x > z + 10) A (x > O)
label(t = 1) = (1 > z + 10) 

The first two rules illustrate minimality of environ-
ments. Both (r) and (r A p) are implicants for s, 
only (r) is a prime implicant. The last rule illustrates
that a single rule may result in the need to find la-
bels for multiple generalized conclusions. As another
example, let us reconsider the knowledge base given
at the beginning of this paper. The labels for some
generalized conclusions are:

label(q1) = (Vl A -.V2 A 0,1 < 2))V
(vl A - v2 A (.2 < u3))

label( 1 = u2) = v2 A (.2 > 
label(--r1) - (p3 A pl A -p2 A (ul < u2))V

(p3 A pl A -p2 A (u2 < u3))V
(v2 A (.2 = 1))

label(w1 = ul + u2 + u3) = p2 A (u2 = 1) A 
label(r2) = p2 A = 1) A 

The first two are straightforward. The third one il-
lustrates some aspects of the definitions, and gives an
idea as to how the general algorithm for computing la-
bels works. Consider each disjunct in the antecedent
of the rule. For (p3 A ql), we plug in the label for 
and convert to dnf, yielding ((p3 A pl ^ -~p2 A (ul 
u2)) V (p3 Apl A-p2 A (u2 < u3))). For v1=1, 
stitute u2 for vl and then conjoin the label for vl=u2,
resulting in p2A(u2 > 0)A(u2 = 1), which is equivalent
to p2 A (u2 = 1).

Rule Dependencies

Given two kbr-rules

rl : condition1 ~ action1,
r2 : condition2 --* action2,

rule rl depends-on rule r2 iff either (1) action2 
a literal involving propositional symbol p2, and p2 is
referenced in condition1, or (2) action2 is of the form
v2 = expr2, action1 is of the form vl = exprl, and v2
is referenced in either condition1 or exprl. This rule
dependency relation induces a partial order on rules.
A KBR knowledge base is acyclic iff there is no rule r
such that <r,r> is in the transitive closure of the rule
dependency relation. The KB-Reducer3 algorithm is
not defined for cyclic knowledge bases. From here on,
we will assume that our knowledge bases are acyclic.
Given a kbr-rule r, we recursively define:

level(r) = 0 iff r depends on no other rules

level(r) = 1 + the maximum level 
any rule that r depends on

Reducing the Rule Base

The algorithm for computing the labels of a KBR
knowledge bases is given by the following RefineTM

program fragment (Refine is a trademark of Reason-
ing Systems Inc. of Palo Alto, CA). In this code, note
that the term conclusion actually refers to generalized
conclusions.

function compute-labels (k:kb) 
enumerate i from 0 to max-rule-level do

enumerate r over { r2 ] r2 in rule-defs(k) and
rule-level(r2)=i } 

rule-cond *- make-dnf(subst-labels(rule-condition(r)));
substitutions *--- subst-for-rule(rule-action(r),rule-cond);
(enumerate s over substitutions do

conclusion *- apply-substitution(s,rule-action(r));
conclusions-for-rule(r) ~--

conclusions-for-rule(r) union {conclusion);
condition *- compute-rule-label(rule-cond,s);
rule-label(<r,conclusion>) *--- minimize-dnf(

disj oin(rule-label(< r,conclusion>),condition)));
(enumerate c over conclusions-for-rule(r) 

label-for-conclusion(c)
minimize-dnf(disjoin(label-for-conclusion(c),

rule-label(<r,c>))))

function compute-rule-label (d:dnf, s:substitution): dnf 
(enumerate c over s do

ptsO *-- { p[p in pterms-of-dnf(d) and
subst-variable(c) in variables(p) 

ptsl ~ setdiff(pterms-of-dnf(d),ptsO);
pts2 *-- { apply-substitution({c},p) [ p in ptsO 
pts3 *--- { conjoin(pt2,pt3) [pt2 in pts2 and

pt3 in label-for-conclusion(c) 
d *-- disjoin(pts3,ptsl));

result ~-- ’false’;
(enumerate pt over minimize-dnf(d) 

if valid(pt) then result *-- disjoin(result,pt));
result

function subst-labels (w:wff): wff = ...
substitutes labels for propositional literals in wff w

function subst-for-rule (action:conclusion, condition:wff):
set(substitution) = ...

returns all combinations of substitutions for
non-input variables in a rule

function minimize-dnf (d:dnf): dnf = ...
minimize a dnf by removing non-prime implicants

function valid (p:product-term): boolean = ...
is p satisfiable and consistent with the constraints?

61



Reducing an Example Knowledge Base

The algorithm will be described by considering the fol-
lowing example:

rl : (qlVq2) ~ q
r2:pl-*a= l
r3 : p2 --* a = 2
r4 : p3 ---~ b = 2
r5:qAa=b---~e=a

First, rules rl through r4 are level zero rules. The
labels resulting from the processing of these rules are
straightforward and given by: label(q) = (ql V q2),
label(a = 1) = pl, label(a = 2) = p2, label(b 
= p3. Now, let us consider the processing of rule
rS. The function call subst-labels((q A a = b)) 
turns ((ql V q2) A a = b). This gets turned into 
dnf formula ((ql A a = b) V (q2 A a = b)). The 
tion call subst-for-rule((c = a),((ql V q2) A a = b)) 
turns ((1/a, 2/b}, (2/a, 2/b}}. So the innermost loop
in compute-label is executed twice (once for each of the
two substitutions).

Consider the first iteration, s = {1/a,2/b}. The
variable conclusion gets (c = 1). Compute-rule-label
works as follows. The first enumeration loop executes
twice. The first time through this loop, the variable d
gets assigned (ql A (1 = b) Apl) V (q2 A (1 Apl).
The second time through this loop, the variable d gets
assigned (qlA(1 2)AplAp3)V(q2A(1 = 2)^plAp3).
Since neither of these product terms are satisfiable, the
result is .false.

Consider the next iteration, s = (2/a, 2/b}. The
variable conclusion gets (c = 2). Compute-rule-label
works as follows. The first enumeration loop executes
twice. The first time through this loop, the variable d
gets assigned: (ql A (2 = b) A p2) V (q2 ̂  (2 = b) 
The second time through this loop, the variable d gets
assigned (q 1A (2 = 2) Ap2 Ap3) V (q2 A (2 = 2) Ap2 
So the rule-label for (c = 2) is: ((ql A p2 A p3) V 
p2 A p3)).

Now, had their been other rules that could conclude
(c = 2), they would have been processed as above and
their contribution to the label for (c - 2) would have
been disjoined into that result (and then minimized).
For example, if there had been a rule (q2 A p3 ---* c 
2) then the final label for (c = 2) would have been
((ql A p2 A p3) V (q2 A p3)).

Basic Anomaly Checks

The tests for redundancy and consistency are similar
to KB-Reducer2 (Ginsberg & Williamson 1989). 
there, a rule is redundant iff all of its rule instances are
redundant. A rule instance (a substitution instance of
a rule) is redundant iff it does not uniquely contribute
to some environment in the label for the generalized
conclusion of that rule instance. This test is (one of the
reasons) why we save rule-labels for each rule during
the computation of labels.

For inconsistencies, we look at the labels for con-
tradictory conclusions; ie., either (p A-~p) or (v 
exprl A v = ezpr2) where exprl and expr2 can not
possibly be equal (as an example, we check for exprl
and expr2 being two different constants). Then we do
the subset and union tests (these names are historical
(Ginsberg 1988 and Ginsberg & Williamson 1989)) 
the labels for those conclusions. As an example, sup-
pose we have label(v = 1) = (el V e2 V ... en), and
label(v - 2) - (fl V f2 V ... V fm), where ei and
fj are environments. The subset test checks to see if
any of the environments in one of the labels entails an
environment in the other label. The union test checks
to see if there is some combined environment (el A f j),
for some i and j, that is satisfiable. While the union
tests clearly subsume the subset tests, they are kept as
separate checks, since we have found that subset tests
tend to indicate the inconsistencies that are the most
problematic.

For completeness checks, we look at each of the kbr-
domains < v,{cl,...,cn} >. For all c in (cl,...,cn},
v=c can be concluded by the knowledge base iff there
is some generalized conclusion v = expr in conclusions-
for-variable(v) such that there is some environment 
in label(v = expr) such that (p A c = expr) is satisfi-
able.

Other Reported Anomalies
In addition, KB-Reducer3 reports on other anomalies
found in a knowledge base. For example, it reports
on undefined variables, assignments to input variables,
invalid conclusions (that violate some kbr-domain),
unfirable rules, rules that are subsumed by another
rule, unused variables, uncomputed variables, dead-
end rules, and overlapping rules. This latter case would
find that the rules (p V q ---* w) A (q V r ---, w) are over-
lapping since they both contribute q to the label for w.
While this is not necessarily a problem in a knowledge
base, it is sometimes worth pointing out to the main-
tainer of a knowledge base that such overlaps exist.

Use of Limited Theorem Proving

An important detail that has been glossed over involves
the use of a theorem prover to determine (1) if an en-
vironment is consistent, and (2) if one environment
entails another environment. Given that such issues
are undecideable for first order logic with equality and
arithmetic, we decided to use some fast heuristic rules
to determine satisfiability and entailment properties.
In general, our strategies may lead us to miss some
anomalies, but only rarely do we incorrectly report
something as being anomalous. Currently, for satisfia-
bility, the problem we may run into is saying a product
term is satisfiable when it is not, while for entailment,
we may say that one product term does not entail an-
other product term when in fact it does. Let us ex-
amine both cases to determine the implications of an
incorrect answer to these questions.

62



Satisfiability is used in three different places in KB-
Reducer3. Primarily it used to prune invalid environ-
ments out of labels, however it is also used in the union
inconsistency tests, and in completeness checks (to see
if some expression can result in some constant value).
In the latter case, an incorrect answer to the satisifia-
bility question may result in overlooking some incom-
pletenesses. In the second case, we may point out some
inconsistencies (from union tests) that can not actually
occur. It is the first case that leads to the most prob-
lems. Basically, this allows a label to contain an invalid
environment. This may result in (1) reporting incon-
sistencies that can not actually happen, (2) reporting
of redundancies that are not, and (3) overlooking some
cases of incompleteness. In practise, this has not oc-
curred much, and when it does, we have been able to
modify our heuristic rules to accommodate the cases
that we encounter. However, we must recognize that
KB-Reducer3 occasionally reports errors that are not
really errors, and it may overlook some errors.

Entailment is used in three different places in KB-
Reducer3. Primarily, it is used to minimize labels, but
it is also used in the inconsistency checks (in the sub-
set tests), and in the redundancy checks (to see if 
rule contributes to a label). An incorrect answer to
entailment in the first case does not lead to the situ-
ation where we report a problem that is not real. In
the second case, we may miss an inconsistency. In the
latter case, we may both miss a redundancy and report
one that is not a real case of redundancy. Again, we
must recognize that our procedures occasionally report
errors that are not real errors.

This issue is one of the most problematic issues for
KB-Reducer3. There are fundamental computational
hurdles involved with reasoning over first order logic
with arithmetic. In an effort to be pragmatic, we have
used some heuristic techniques. Occasionally these
lead to incorrect results. This may make a user of KB-
Reducer3 question the value in using the tool. We hope
that this does not happen much, and when it does, we
hope the benefit of using the tool far out-weighs the
inaccuracies and costs associated with using the tool.
So far, this has been our experience.

Practical Use of KB-Reducer3

KB-Reducer3 is written in about 2,700 lines of
RefineTM code. It runs on either the IBM KS 6000
or the Sun Spare Station 2. It took about 6 person
months to write the initial version of KB-Reducer3,
and an additional 3 person months to fine tune the
algorithms and get it ready for production use. An
additional person month was required to write a lan-
guage translator that takes the actual source code of
production knowledge bases and translates them into
the language that is accepted by KB-Reducer3. While
KB-Reducer3 is not yet in full production use, plan-
ning is underway to determine how best to integrate it
into our knowledge base maintenance process.

However, KB-Reducer3 has been used to analyze six
knowledge bases. One knowledge base with 123 rules
was analyzed in just over 5 minutes. Another knowl-
edge base with 156 rules was analyzed in roughly 120
hours (elapsed wall clock time). In general, we have
found that simply using the number of rules in a knowl-
edge base as a gage of the complexity of KB-Reducer3
is inadequate. This metric does not gage the intercon-
nectivity of those rules, etc. In general, most of the
knowledge bases that we have tried to analyze have
bogged down in the label computation part of the pro-
cessing, and have not yet made it through to the error
analysis.

This has led us to come up with two approaches to
the partial analysis of a knowledge base. In the first
approach, the analyst interrupts the label computa-
tion, sets a global boolean variable, and then resumes
the computation. Special code in the reduction pro-
cess periodically checks this global variable, and when
it is found to be set, the code cleans up some global
data structures, skips the remaining rules, and pro-
ceeds to the error analysis part of KB-Reducer3. The
error analysis will be valid for the subset of rules that
have been processed; ie., any reported errors in this
subset will be errors in the original knowledge base
(however, there may be errors in the full knowledge
base that will be missed). In practice, this approach
has allowed us to analyze roughly two-thirds of the
rules in the knowledge bases that we had been unable
to completely analyze.

A second approach to the partial analysis of knowl-
edge bases is to create subsets of large knowledge bases,
and then analyze those subsets completely. We created
two tools for creating subsets of a knowledge base. The
first one is given a set of rules, and returns all those
rules that those rules depend on (recursively). The sec-
ond one is given a set of variables, and returns all those
rules necessary to completely determine the values for
all those variables. While the approach described in
the previous paragraph gives a horizontal slice through
a rule base, the approach described here gives a vertical
slice.

So what have we found in these analyses? Virtually
all error types were found in these knowledge bases;
inconsistencies, redundancies, incompletenesses, etc.
KB-Reducer3 has pointed out multiple areas for im-
provement in the logic of our knowledge bases. In using
this tool, we were reminded that this sort of analysis
simply points out symptoms of errors, and not their
causes. Errors such as redundancies may be caused
by many situations (for example, an analyst left off 
condition on a rule). Thus, the results of an analy-
sis by KB-Reducer3 requires careful interpretation by
the knowledge engineers who are developing or main-
taining the knowledge bases. See (Dahl ~ Williamson
1993) for a more complete discussion of the use of KB-
Reducer3.

63



Conclusion

This paper describes KB-Redueer3, a tool that ana-
lyzes rule bases containing equations for various types
of anomalies. We have formally defined the intended
behaviour of this program, and then informally de-
scribed the algorithm that it uses to search for anoma-
lies. We briefly described our experiences in using this
tool on real knowledge bases.

The bottom line on KB-Reducer3 is that it produces
useful results. However, it is a very computationally
intensive application, often requiring many hours of
compute time. Complexity is a fundamental problem.
Current research is underway on developing an incre-
mental version of KB-Reducer3 (this work is similar
to the work reported in (Meseguer 1992)). In such
an approach, once the reduction of a knowledge base
is computed, it is saved in a persistent object base.
Then, when the knowledge base is updated (eg., to
add or delete a rule), only that portion of the reduc-
tion that is affected by this change needs to be re-
computed. In such a view, knowledge base reduction
becomes an integral part of the development and main-
tenance process, with the reduction and error analy-
sis continually proceeding as the knowledge engineers
evolve their knowledge bases.

References

1. Dahl, M., and Williamson, K. 1992. A Verification
Strategy for Long Term Maintenance of Rule-Based
Systems. In the AAAI Workshop on Knowledge
Base Verification and Validation, San Jose, CA.

2. Dahl, M., and Williamson, K. 1993. Experiences
of using Verification Tools for Maintenance of Rule-
Based Systems. In the AAAI Workshop on Knowl-
edge Base Verification and Validation, Washington
D.C.

3. Genesereth, M., and Nilsson, N. 1987. Logical Foun-
dations of Artificial Intelligence, Los Altos, CA:
Morgan Kaufmann Publishers.

4. Ginsberg, A. 1988. Knowledge Base Reduction: A
New Approach to Checking Knowledge Bases for In-
consistency and Redundancy. In Proceedings of the
Seventh National Conference on AI.

5. Ginsberg, A., and Williamson, K. 1989. Checking
Quasi-First-Order-Logic Rule-Based Systems for In-
consistency and Redundancy. AT~T Bell Laborato-
ries Technical Memorandum 11354-891229-02TM.

6. Meseguer, P. 1992. Incremental Verification of Rule-
Based Expert Systems. In Proceedings of the Euro-
pean Conference on AI.

64




