From: AAAI Technical Report WS-94-02. Compilation copyright © 1994, AAAI (www.aaai.org). All rights reserved.

Designing a Family of Coordination Algorithms *

Keith S. Decker and Victor R. Lesser
Department of Computer Science
University of Massachusetts, Amherst, MA 01003
Email: DECKER@CS.UMASS.EDU

May 27, 1994

Abstract

Many researchers have shown that there is no single best organization or coordination
mechanism for all environments. This paper discusses the design and implementation of an
extendable family of coordination mechanisms, called Generalized Partial Global Planning
(GPGP), that form a basic set of coordination mechanisms for teams of cooperative
computational agents. The important features of this approach include a set of modular
coordination mechanisms (any subset or all of which can be used in response to a particular
task environment); a general specification of these mechanisms involving the detection
and response to certain abstract coordination relationships in the incoming task structure
that are not tied to a particular domain; and a separation of the coordination mechanisms
from an agent’s local scheduler that allows each to better do the job for which it was
designed. We will also discuss the interactions between these mechanisms and how to
decide when each mechanism should be used, drawing data from simulation experiments
of multiple agent teams working in abstract task environments.

1 Introduction

This paper presents a formal description of the Generalized Partial Global Planning (GPGP)
coordination approach [6] and extends it to create a family of coordination algorithms that can
be adapted to different environments. The GPGP family of algorithms is based on recognizing
and reacting to the characteristics of certain coordination relationships, an approach shared
with Von Martial’s work on the favor relationship [23]. The approach described here is based
on modular components (called ‘mechanisms’) that work in conjunction with, but do not
replace, a fully functional agent with a local scheduler. Each component or mechanism can be
added as required in reaction to the environment in which the agents find themselves a part.

*This work was supported by DARPA contract N00014-92-J-1698, Office of Naval Research contract
N00014-92-J-1450, and NSF contract CDA 8922572. The content of the information does not necessarily
reflect the position or the policy of the Government and no official endorsement should be inferred.

An individual algorithm in the family is defined by a particular set of active mechanisms and
their associated parameters.

This paper will also summarize experimental results that involve a complete implementation
of GPGP and a separately developed real-time local scheduler [16, 15]. We will show how to
decide when a particular mechanism is useful, how some family members perform relative to a
centralized algorithm, and what the space of possible coordination algorithms looks like for the
five mechanisms currently defined. We analyze the performance of this family of algorithms
through simulation in conjunction with the heuristic real-time local scheduler and randomly
generated abstract task environments. In these environments, the agents attempt to maximize
the system-wide total utility (a quantity called ‘quality’, described later) by executing sequences
of interrelated ‘methods’. The agents do not initially have a complete view of the problem
solving situation, and the execution of a method at one agent can either positively or negatively
affect the execution of other methods at other agents.

The GPGP approach specifies three basic areas of the agent’s coordination behavior: how
and when to communicate and construct non-local views of the current problem solving
situation; how and when to exchange the partial results of problem solving; how and when to
make and break commitments to other agents about what results will be available and when.
The use of commitments in the GPGP family of algorithms is based on the ideas of many
other researchers [2, 21, 1, 18]. Each agent also has a heuristic local scheduler that decides
what actions the agent should take and when, based on its current view of the problem solving
situation (including the commitments it has made), and a utility function. The coordination
mechanisms supply non-local views of problem solving to the local scheduler, including what
non-local results will be available locally, and when they will be available. The local scheduler
creates (and monitors the execution of) schedules that attempt to maximize group quality
through both local action and the use of non-local actions (committed to by other agents).

One way to think about this work is that the GPGP approach views coordination as
modulating local control, not supplanting it—a two level process that makes a clear distinc-
tion between coordination behavior and local scheduling. This process occurs via a set of
coordination mechanisms that post constraints to the local scheduler about the importance of
certain tasks and appropriate times for their initiation and completion. By concentrating on
the creation of local scheduling constraints, we avoid the sequentiality of scheduling in the
original PGP algorithm [12] that occurs when there are multiple plans. By having separate
modules for coordination and local scheduling, we can also take advantage of advances in real-
time scheduling algorithms to produce cooperative distributed problem solving systems that
respond to real-time deadlines. We can also take advantage of local schedulers that have a great
deal of domain scheduling knowledge already encoded within them. Finally, our approach
allows consideration of termination issues that were glossed over in the PGP work (where
termination was handled by an external oracle). This paper will also discuss how to decide
when each mechanism should be used and how the mechanisms interact, drawing on simple
models of generic task structures and data from simulation experiments where multiple agent
teams work in abstract task environments.

The way that we specify the family of algorithms in a general, domain-independent way
(as responses to certain environmental situations and interactions with a local scheduler) is
very important. It leads to the eventual construction of libraries of reusable coordination
components that can be chosen (customized) with respect to certain attributes of the target

_ =33

application.

1.1 The Task Environment

The observation that no single organization or coordination algorithm is ‘the best’ across
environments, problem-solving instances, or even particular situations is a common one in the
study of both human organizational theory (especially contingency theory) [19, 14, 22] and
cooperative distributed problem solving [13, 11, 10, 8]. Key features of task environments
demonstrated in both these threads of work that lead to different coordination mechanisms
include those related to the structure of the environment (the particular kinds and patterns of
interrelationships or dependencies that occur between tasks) and environmental uncertainty
(both in the 2 priori structure of any problem-solving episode and in the outcome’s of an agent’s
actions; for example, the presence of both uncertainty and concomitant high variance in a task
structure). This makes it important for a general approach to coordination (i.e., one that will
be used in many domains) to be appropriately parameterized so that the overhead activities
associated with the algorithm, in terms of both communication and computation, can be varied
depending upon the characteristics of the application environment.

So far we have made two important statements: that there is ample evidence that no single
coordination algorithm is ‘the best’ across different environments, and that we are going to
describe a family of coordination algorithms. That we need a family of algorithms follows from
the first statement; we will now briefly discuss how that family is organized. At the most abstract
level, each of the five mechanisms we are about to describe are parameterized independently
(the first two have three possible settings and the last three can be in or out) for a total of 72
combinations. Many of these combinations do not show significantly different performance
in randomly generated episodes, as will be discussed in the experiments (Section 3), although
they may allow for fine-tuning in specific applications. More mechanisms can (and have) been
added to expand the family, but the family can also be enlarged by making each mechanism
more situation-specific. For example, mechanisms can have their parameters set by a mapping
from dynamic meta-level measurements such as an agent’s load or the amount of real-time
pressure. Mechanisms can be ‘in’ or ‘out’ for individual classes of task groups, or tasks, or even
specific coordination relationships, that re-occur in particular environments. The cross product
of these dynamic environmental cues provides a large but easily enumerated space of potential
coordination responses that are amenable to the adaptation of the coordination mechanisms
over time by standard machine learning techniques. In the experimental section of this paper
we will only consider the coarsest parameterization of the mechanisms. The reader should keep
in mind when reading about the various coordination techniques that we have explicitly stated
that they will not be useful in every situation. Instead, our purpose is to carefully describe the
mechanisms and their interactions so that a decision about their inclusion in an application
can be made analytically or experimentally (we will present an example in Section 3).

1.1.1 Uncertainty

Less uncertainty in the environment means less uncertainty in the existence and extent of the
task interdependencies, and less uncertainty in local scheduling—therefore the agents need less
complex coordination behaviors (communication, negotiation, partial plans, etc) [20]. For

-3

example, one can have cooperation without communication [17] if certain facts are known
about the task structure by all agents. In this paper agents will not have « priori information
about the structure of an episode, but they will be able to get information about a subset
of the structure after the start of problem solving—no single agent working alone will be
able to construct a view of the entire problem (task structure) facing the group. This lack
of information (another form of environmental uncertainty) can cause the local scheduler to
make sub-optimal decisions. Some of this uncertainty will arise from disparities in the objective
(real) task structure and the subjective (agent-believed) task structure. For example, an agent
may not know the true duration of a method and if the execution variance is high may not
even have a good estimate. In this paper we will be looking at environments that do not have
this characteristic (of large variance between objective characteristics and subjective estimates of
those characteristics). Instead we will focus on a second source of structural uncertainty—each
agent has only a partial subjective view of the current episode.

1.1.2 Task interrelationships

Task interrelationships include the relationships of tasks to the performance criteria by which
we will evaluate a system, to the control decision structures of the agents which make up a
system, and to the performance of other tasks. We will represent, analyze, and simulate the
effects of task interrelationships using the TEMS (Task Analysis, Environment Modeling, and
Simulation) framework [9]. The important features of TEMS include its layered description of
environments (objective reality, subjective mapping to agent beliefs, generative description of the
other levels across single problem-solving instances); its acceptance of any performance criteria
(based on temporal location and quality of task executions); and its non-agent-centered point of
view that can be used by researchers working in either formal systems of mental-state-induced
behavior or experimental methodologies. The TAMS objective subtask relationship indicates
the relationship of tasks to system performance criteria; the subjective mapping indicates
the initial beliefs available to an agent’s control decision structures; various non-local effects
such as enables and facilitates indicate how the execution of one task affects the duration or
quality of another task. When a relationship extends between parts of a task structure that are
subjectively believed by different agents, we call it a coordination relationship. The basic idea
behind Generalized Partial Global Planning (GPGP) is to detect and respond appropriately to

these coordination relationships.

1.1.3 Representing task environments

A problem instance (called an episode E) is defined as a set of task groups, each with a deadline
D(T),suchasE = (71, Tz,. .., T,). The task groups (or subtasks within them) may arrive at
different times (Ar(z) is the arrival time of task &), but in this paper they will all arrive at the
start of problem solving (like the classic DVMT). While task groups are independent of one
another computationally?, the tasks within a single task group are in general not independent.
Figure 1 shows an objective task group and agent A’s subjective view of that task group. A task
group consists of a set of tasks related to one another by a subtask relationship that forms an
acyclic graph (here, a tree). The circles higher up in the tree represent various subtasks involved

! Except for the use of the processor(s) or other physical resources.

-35-

in the task group, and indicate precisely how quality will accrue depending on what leaf tasks are
executed and when. Tasks at the leaves of the tree (without subtasks) represent methods, which
are the actual computations or actions the agent will execute (in the figure, these are shown
as boxes). The arrows between tasks and/or methods indicate other task interrelationships
where the execution of some method will have a positive or negative effect on the quality or
duration of another method. The presence of these interrelationships make this an NP-hard
scheduling problem; further complicating factors for the local scheduler include the fact that
multiple agents are executing related methods, that some methods are redundant (executable at
more than one agent), and that the subjective task structure may differ from the real objective
structure. This notation and associated semantics are formally defined in [9].

agent | method (executable task)

task with quality
accrual function min

— subtask relationship

- -- > enables relationship

e facilitates relationship

Agent A initial subjective view Agent B initial subjective view

Figure 1: Agent A and B’s subjective views (bottom) of a typical objective task group (top)

1.2 The Agent Architecture

The TEMS framework makes very few assumptions about the architecture of agents—agents are
loci of belief and action. Agents have some control mechanism that decides on actions given the
agent’s current beliefs. There are three classes of actions: method execution, communication,
and information gathering. Method execution actions cause quality to accrue in a task group
(as indicated by the task structure). Communication actions are used to send the results of
method executions (which in turn may trigger the effects of various task interrelationships) or
meta-level information. Information gathering actions add newly arriving task structures, or
new communications, to an agent’s set of beliefs.

Formally, we write BY(¢) to mean agent A subjectively believes at time ¢ (from
Shoham([21]). We will shorten this to B(z) when we don’t have a particular agent or time in
mind. An agent’s subjective beliefs about the current episode B(E) includes the agent’s beliefs
about various task groups (e.g., B(7T; € E)), and an agent’s beliefs about each task group
includes beliefs about the tasks in that task group (e.g., B(Ta, Mj € 7T:)) and the relationships
between these tasks (e.g., B(enables(T,, M;))).

The GPGP family of coordination algorithms makes stronger assumptions about the agent
architecture. Most importantly, it assumes the presence of a local scheduling mechanism (to
be described in the next section) that can decide what method execution actions should take
place and when. It assumes that agents do not intentionally lie and that they believe what
they are told (i.e. if agent Al tells agent A2 at time ¢; with communication delay § that
B (enables(T;, M)), then Bf,l’z(enab|es(Ta, M,)) where t; > t; + 4 is the earliest time
after the communication arrives that agent A2 performs a new communication information
gathering action to read the message from Al). However, because agents can believe and
communicate only subjective information, they may unwittingly transmit information that is
inconsistent with an objective view (this can cause, among other things, the phenomena of
distraction). Finally, the GPGP family approach requires domain-dependent code to detect
or predict the presence of coordination relationships in the local task structure [5]. In this
paper we will refer to that domain-dependent code as the information gathering action dezect-
coordination-relationships; we will describe this action more in Section 2.2.

1.3 The Local Scheduler

Each GPGP agent contains a local scheduler that takes as input the current, subjectively
believed task structure and produces a schedule of what methods to execute and when. Using
the information in the subjective structure about the potential duration, potential quality,
and relationships of the methods, it chooses and orders executable methods in an attempt to
maximize a pre-defined utility measure for each task group 7. In this paper the utility function
is the sum of the task group qualities. The local scheduler attempts to maximize this utility
function U(E) = Y7cg Q(T,D(T)), where Q(T,t) denotes the quality of T' at time ¢ as
defined in [9].2

Beside the subjective task structure, the local scheduler should accept a set of commitments C
from the coordination component. These commitments are extra constraints on the schedules
that are produced by the local scheduler. For example, if method 1 is executable by agent A and
method 2 is executable by agent B, and the methods are redundant, then agent A’s coordination
mechanism may commit agent A to do method 1 both locally and socially (commitments are
directed to particular agents in the sense of the work of Shoham and Castelfranchi [1, 21]) by
communicating this commitment to B (so thatagent B’s coordination mechanism records agent
A’s commitment, see the description of non-local commitments NLC below). This paper will
use two types of commitments: C'(Do(T, q)) is a commitment to ‘do’ (achieve quality for) T
and is satisfied at the time ¢ when Q(T',t) > g; the second type C'(DL(T, g, ta)) is a ‘deadline’
commitment to do T' by time ¢4 and is satisfied at the time ¢ when [Q(T,t) > g] A [t < ta).2

A schedule S produced by a local scheduler will consist of a set of methods and start times:
S = {{My,t1),(Mz,t3),...,(Mqn,t,)}. The schedule may include idle time, and the local
scheduler may produce more than one schedule upon each invocation in the situation where
not all commitments can be met. The different schedules represent different ways of partially
satisfying the set of commitments (see [15] and the next section). The function Violated(SS)

returns the set of commitments that are believed to be violated by the schedule. For violated
deadline commitments C(DL(T', q,ta)) € Violated(S) the function Alt(C, S) returns an

?Note that quality does not accrue after a task group’s deadline.
3Other commitments, such as to the earliest start time of a task, may also prove useful.

alternative commitment C(DL(T, g,})) where £} = mint such that Q(T,t) > g if sucha
t exists, or NIL otherwise. For a violated Do commitment an alternative may contain a lower
minimum quality, or no alternative may be possible.

The final piece of information that is used by the local scheduler is the set of non-local
commitments made by other agents NLC. This information can be used by the local scheduler
to coordinate actions between agents. For example the local scheduler could have the property
that, if method M is executable by agent A and is the only method that enables method M,
at agent B (and agent B knows this Bg(enables(My, M,))), and Bo(C(DL(My,q,t1))) €
Bp(NLC), then for every schedule S produced by agent B, (Mp,t) € S = t > t,.
The function Uet(E, S,NLC) returns the estimated utility at the end of the episode if
the agent follows schedule S and all non-local commitments in NLC are kept. Thus we
may define the local scheduler as a function LS(E, C, NLC) returning a set of schedules
S = {51,S53,...,5m}. More detailed information about this kind of interface between the
local scheduler and the coordination component may be found in [15].

This is an extremely general definition of the local scheduler, and is the minimal one
necessary for the GPGP coordination module. Stronger definitions than this will be needed
for more predictable performance, as we will discuss later. Ideally, the optimal local scheduler
would find both the schedule with maximum utility Sv and the schedule with maximum
utility that violates no commitments Sp. In practice, however, a heuristic local scheduler will
produce a set of schedules where the schedule of highest utility Sy is not necessarily optimal:

U(E, Sy, NLC) < U(E, Sy, NLC).

2 The Coordination Mechanisms

The role of the coordination mechanisms is to provide constraints to the local scheduler (by
modifying portions of the subjective task structure of the episode E or by making commitments
in C) thatallow the local scheduler to construct objectively better schedules. The modules fulfill
this role by (variously) communicating private portions of its task structures, communicating
results to fulfill non-local commitments, and making commitments to respond to coordination
relationships between portions of the task structure controllable by different agents or within
portions controllable by multiple agents.*

The five mechanisms we will describe in this paper form a basic set that provides similar
functionality to the original partial global planning algorithm as explained in [6]. Mechanism
1 exchanges useful private views of task structures; Mechanism 2 communicates results; Mech-
anism 3 handles redundant methods; Mechanisms 4 and 5 handle hard and soft coordination
relationships. More mechanisms can be added, such as one to update utilities across agents as
discussed in the next section, or to balance the load better between agents. The mechanisms
are independent in the sense that they can be used in any combination. If inconsistent con-
straints are introduced, the local scheduler would return at least one violated constraint in all its
schedules, which would be dealt with as discussed in the next section. Since the local scheduler
is boundedly rational and satisfices instead of optimizing, it may do this even if constraints are
not inconsistent (i.e. it does not search exhaustively).

#We say a subtree of a task structure is consrollable by an agent if that agent has at least one executable method
in that subtree.

-38-

2.1 The Substrate Mechanisms

All the specific coordination mechanisms rest on a common substrate that handles information
gathering actions (new task group arrivals and receiving communications), invoking the local
scheduler and choosing a schedule to execute (including dealing with violated commitments),
and deciding when to terminate. Information gathering is done at the start of problem solving,
whenever the agent is otherwise idle (but not ready to terminate), and when communications are
expected from other agents. Communications are expected in response to certain events (such as
after the arrival of a new task group) or as indicated in the set of non-local commitments NLC.
This is the minimal general information gathering policy.® Termination occurs for an agent
when the agent is idle, has no expected communications, and no outstanding commitments.

Choosing a schedule is more complicated. From the st of schedules S returned by the local
scheduler, two particular schedules are identified: the schedule with the highest utility Sy and
the best committed schedule S¢. If they are the same, then that schedule is chosen. Otherwise,
we examine the sum of the changes in utility for each commitment. Each commitment, when
created, is assigned the estimated utility Uey: for the task group.of which itis a part. This utility
may be updated over time (when other agents depend on the commitment, for example). We
then choose the schedule with the largest positive change in utility. This allows us to abandon
commitments if doing so will result in higher overall utility. The coordination substrate does
not use the local scheduler’s utility estimate Uy directly on the entire schedule because it
is based only on a local view, and the coordination mechanism may have received non-local
information that places a higher utility on a commitment than it has locally.

For example, at time ¢ agent A may make a commitment C) on task T' € T: € E that
results in a schedule S;. C initially acquires the estimated utility of the task group of which
it is a part, U(C1) < Uest({T1}, S1, BA(NLC)). Let U(C,) = 50. After communicating
this commitment to agent B (making it part of Bg(INLC), agent B uses the commitment
to improve Uest({71}, S2, Bs(NLC)) to 100. A coordination mechanism can detect this
discrepancy and communicate the utility increase back to agent A, so that when agent A
considers discarding the commitment, the coordination substrate recognizes the non-local
utility of the commitment is greater than the local utility.®

If both schedules have the same impact, the one that is more negotiable is chosen. Every
commitment has a negotiability index (high, medium, or low) that indicates (heuristically) the
difficulty in rescheduling if the commitment is broken. This index is set by the individual
coordination mechanisms. For example, hard coordination relationships like enables that
cannot be ignored will trigger commitments with low negotiability.

If the schedules are still equivalent, the shorter one is chosen, and if they are the same length,
one is chosen at random. After a schedule S is chosen, if Violated(.S) is not empty, then each
commitment C € Violated(S) is replaced with its alternative C +— C\ C UAIt(C, S). Ifthe
commitment was made to other agents, the other agents are also informed of the change in the

8The minimal policy would examine each element of NLC at the appointed time and if the local schedule
had changed so that the reception of the information would no longer have any effect, the associated information
gathering action could be skipped.

&Wrhile it is clear that without this policy the system of agents will perform non-optimally, it is not clear how
often the situation occurs or what the performance hit is. Future work will have to examine the costs and benefits
of this policy; for this reason'we do not include this mechanism among the five examined in this paper.

-39. .

commitment. While this could potentially cause cascading changes in the schedules of multiple
agents, it generally does not for three reasons: first, as we mentioned in the previous paragraph
less important commitments are broken first; secondly, the resiliancy of the local schedulers to
solve problems in multiple ways tends to damp out these fluctuations; and third, agents are
time cognizant resource-bounded reasoners that interleave execution and scheduling (i.c., the
agents cannot spend all day arguing over scheduling details and still meet their deadlines). We
have observed this useful phenomenon before [7] and plan to analyze it in future work.

2.2 Mechanism 1: Updating Non-Local Viewpoints

Remember that each agent has only a partial, subjective view of the current episode. Agents
can, therefore, communicate the private portions of their subjective task structures to develop
better, non-local, views of the current episode. They could even communicate all of their
private structural information, in an attempt to develop a global subjective view . The GPGP
mechanism described here can communicate no private information (‘none’ policy, no non-
local view), or all of it (‘all’ policy, global view), or take an intermediate approach (‘some’ policy,
partial view): an agent communicates to other agents only the private structures that are related
by some coordination relationship to a structure known by the other agents. The process of
detecting coordination relationships between private and shared parts of a task structure is in
general very domain specific, so in the experiments presented later in the paper we model this
process by a new information gathering action, detect-coordination-relationships, that takes some
fixed amount of the agent’s time. This action is chosen when a new task group arrives (which
adds new information to the agent’s private task structures).

The set P of privately believed tasks or methods at an agent A (tasks believed at arrival time
by A only) is then {z | Task(z) AVa € A\ A, —~B4(BA(=)(z))}, where A is the set of all
agents and Ar() is the arrival time of z. Given this definition, the action detect-coordination-
relationships returns the set of private coordination relationships PCR. = {r | T1 e PAT; ¢
P A [r(Ty, T3) V #(T2, T1)]} between private and mutually believed tasks. The action does
not return what the task T} is, just that a relationship exists between Ty and some otherwise
unknown task Ty. For example, in the DVMT, we have used the physical organization of agents
to detect that Agent A’s task T} in an overlapping sensor area is in fact related to some unknown
task Ty at agent B (i.e. Ba(Bg(T2))) [6, 5]. The non-local view coordination mechanism
then communicates these coordination relationships, the private tasks, and their context: if
7(Ty,T;) € PCR and Ty € P then r and T will be communicated by agent A to the set of
agents {a | Ba(Bi(T2))}.

For example, Figure 2 shows the local subjective beliefs of agents A and B after the
communication from one another due to this mechanism. The agents’ initial local view was
shown previously in Figure 1. In this example, T5 and T} are two elements in Agent B’s private
set of tasks P, facilitates(Ty, T, da, ¢q) € PCR (the facilitation relates a private task to
a mutually believed task), and enables(T}, T3) is completely local to Agent B (it relates two
private tasks). At the start of this section we mentioned that coordination relationships exist
between portions of the task structure controllable by different agents (i.c., in PCR) and
within portions controllable by multiple agents. We'll denote the complete st of coordination
relationships as CR; this includes all the elements of PCR and all the relationships between

non-private tasks. Some relationships are entirely local—between private tasks—and are only of

_ -40-
~

\\

method (executable task)

task with quality
accrual function min

@]

subtask relationship

--- enables relationship
~—cpe facilitates relationship

Agent A's view after communication from B Agent B's view after communication from A

Figure 2: Agents A and B’s local views after receiving non-local viewpoint communications via mechanism 1.
Figure 1 shows the agents’ initial states.

concern to the local scheduler. The purpose of this coordination mechanism is the exchange of
information that expands the set of coordination relationships CR. Without this mechanism
in place, CR will consist of only non-private relationships, and none that are in PCR.. Since
the primary focus of the coordination mechanisms is the creation of social commitments in
response to coordination relationships (elements of CR), this mechanism can have significant
indirect benefits. In environments where [PCR | tends to be small, very expensive to compute,
or not useful for making commitments (see the later sections), this mechanism can be omitted.

2.3 Mechanism 2: Communicating Results

The result communication coordination mechanism has three possible policies: communicate
only the results necessary to satisfy commitments to other agents (the minimal policy); com-
municate this information plus the final results associated with a task group (“TG’ policy),
and communicate all results (‘all’ policy). Extra result communications are broadcast to all
agents, the minimal commitment-satisfying communications are sent only to those agents to
whom the commitment was made (i.e., communicate the result of T' to the set of agents

{A € A|B(Ba(C(T))}-

2.4 Mechanism 3: Handling Simple Redundancy

Potential redundancy in the efforts of multiple agents can occur in several places in a task
structure. Any task that uses a ‘max’ quality accumulation function (one possible semantics
for an ‘OR’ node) indicates that, in the absence of other relationships, only one subtask needs
to be done. When such subtasks are complex and involve many agents, the coordination of
these agents to avoid redundant processing can also be complex; we will not address the general
redundancy avoidance problem in this paper (see instead [20]). In the original PGP algorithm
and domain (distributed sensor interpretation), the primary form of potential redundancy
was simple method redundancy—the same result could be derived from the data from any of
a number of sensors. The coordination mechanism described here is meant to address this

simpler form of potential redundancy.

The idea behind the simple redundancy coordination mechanism is that when more than
one agent wants to execute a redundant method, one agent is randomly chosen to execute
it and send the results to the other interested agents. This is a generalization of the ‘static’
organization algorithm discussed by Decker and Lesser [8]—it does not try to load balance, and
uses one communication action (because in the general case the agents do not know beforehand,
without communication, that certain methods are redundant”). The mechanism considers the
set of potential redundancies RCR = {r € CR | [r = subtask(T, M, min)] A [VM €
M, method(M)]}. Then for all methods in the current schedule S at time ¢, if the method is
potentially redundant then commit to it and send the commitment to Others(M) (non-local
agents who also have a method in M):

(M, tu) € S] A
[subtask(T', M, min) € RCR] A
[MeM] = [C(Do(M,Qet(M,D(M),S5))) € C| A
[Comm(M, Others(M), t) €]

See for example the top of figure 3—both agents commit to Do their methods for T7.

After the commitment is made, the agent must refrain from executing the method in
question if possible until any non-local commitments that were made simultaneously can arrive
(the communication delay time §). This mechanism then watches for multiple commitments in
the redundant set (subtask(7, M, min) € RCR, M; € M, M, € M, C(Do(M,,q)) € C,
and Bg(C(Do(Mz,q))) € NLC)® and if they appear, a unique agent is chosen randomly
(but identically by all agents) from those with the best commitments to keep its commitment.
All the other agents can retract their commitments. For example the bottom of figure 3 shows
the situation after Agent B has retracted its commitment to Do Bj. If all agents follow the
same algorithm, and communication channels are assumed to be reliable, then no second
message (retraction) actually needs to be sent (because they all choose the same agent to do the
redundant method). In the implementation described later, identical random choices are made
by giving each method a unique random identifier, and then all agents choose the method with
the ‘smallest’ identifier for execution.

Initially, all Do commitments initiated by the redundant coordination mechanism are
marked highly negotiable. When a redundant commitment is discovered, the negotiability of
the remaining commitment is lowered to medium to indicate the commitment is somewhat
more important.

2.5 Mechanism 4: Handling Hard Coordination Relationships

Hard coordination relationships include relationships like enables(My, Ma) that indicate that
M; must be executed before M, in order to obtain quality for M;. Like redundant methods,
hard coordination relationships can be culled from the set CR. The hard coordination

"The detection of redundant methods is domain-dependent, as discussed earlier. Since we are talking here
about simple, direct redundancy (i.e. doing the exact same method at more than one agent) this detection is very
straight-forward.

8Read “M; and M3 are redundant, and I am doing M; and I know that B has committed to me to do M,”.

| €—— duration
€ quality

Commitments made from A to B Schedules:
Do(A1,100) [Mech #3] [Be _T81T

Commitments made from B to A
DL(T4,50,5) [Mech #5] —)
Do(B1,100) [Mech #3 t=2 #=5 t=l13

Agent A's view after communication from B Agent B's view afer communication from A

Commitments made from A to B; Schedules:
Do(A1,150) [Mech #3] B{ B3
Commitments made from B to A
DL(T4,50,5) [Mech #5] ; ;
r=2 t=5 =10
Agent A's view after recieveing B's commitments Agent B's view after receiving A's commitments

Figure 3: A continuation of Figures I and 2. At top: agents A and B propose certain commitments to one another
via mechanisms 3 and 5. At bottom: after receiving the initial commitments, mechanism 3 removes agent B’s
redundant commitment.

mechanism further distinguishes the direction of the relationship—the current implementation
only creates commitments on the predecessors of the enables relationship. We'll et HPCR C
CR indicate the set of potential hard predecessor coordination relationships. The hard
coordination mechanism then looks for situations where the current schedule S at time ¢ will
produce quality for a predecessor in HPCR,, and commits to its execution by a certain deadline
both locally and socially:

[Qest(T:D(T): S) > 0] A
[enables(T,M) € HPCR] = [C(DL(T,Qet(T,D(T),S),tearty)) € C] A
[Comm(C, Others(M), t) € Z]

The next question is, by what time (feariy above) do we commit to providing the answer?
One solution, usable with any local scheduler that fits our general description in Section 1.3,
is to use the mint such that Qest(T,D(T),S) > 0. In our implementation, the local
scheduler provides a query facility that allows us to propose a commitment to satisfy as ‘early’
as possible (thus allowing the agent on the other end of the relationship more slack). We take

advantage of this ability in the hard coordination mechanism by adding the new commitment
C(DL(T, Qest(T,D(T), S), "early”)) to the local commitments C, and invoking the local
scheduler LS(E, C,NLC) to produce a new set of schedules S. If the preferred, highest
utility schedule Sy € S has no violations (highly likely since the local scheduler can simply
return the same schedule if no better one can be found), we replace the current schedule with
it and use the new schedule, with a potentially earlier finish time for T, to provide a value for
tearly. The new completed commitment is entered locally (with low negotiability) and sent to
the subset of interested other agents.

If redundant commitments are made to the same task, the earliest commitment made by
any agent is kept, then the agent committing to the highest quality, and any remaining ties are
broken by the same method as before.

Currently, the hard coordination mechanism is a proactive mechanism, providing infor-
mation that might be used by other agents to them, while not putting the individual agent to
any extra effort. Other future coordination mechanisms might be added to the family that are
reactive and request from other agents that certain tasks be done by certain times; this is quite
different behavior that would need to be analyzed separately.

2.6 Mechanism 5: Handling Soft Coordination Relationships

Soft coordination relationships are handled analogously to hard coordination relationships ex-
cept that they start out with high negotiability. In the current implementation the predecessor
of a facilitates relationship is the only one that triggers commitments across agents, although
hinders relationships are present. The positive relationship facilitates(My, My, ¢4, ¢q) indi-
cates that executing M before M decreases the duration of M, by a ‘power’ factor related to
¢4 and increases the maximum quality possible by a ‘power’ factor related to ¢q (see [9] for
the details). A more situation-specific version of this coordination mechanism might ignore
relationships with very low ‘power’. The relationship hinders(My, My, ¢4, ¢q) is negative and
indicates an #ncrease in the duration of M, and a decrease in maximum possible quality. A
coordination mechanism could be designed for hinders (and similar negative relationships)
and added to the family. To be proactive like the existing mechanisms, a hinders mechanism
would work from the successors of the relationship, try to schedule them late, and commit to
an earliest start time on the successor. Figure 3 shows Agent B making a D commitment to do
method By, which in turn allows Agent A to take advantage of the facilitates(Ty4, T'1, 0.5, 0.5)
relationship, causing method A; to take only half the time and produce 1.5 times the quality.

3 Experiments in Generalized Partial Global Planning

In this final section we will discuss experiments we have conducted with our implementation
of these ideas:

o Methodologically, how should we decide when the addition of a particular mechanism
is warranted?

® What is the performance of a system using all the mechanisms compared to a system
that only broadcasts results? Compared to a system with a centralized scheduler?

o What is the performance space of the GPGP family, as delineated by the five existing
mechanisms?

As we have stated several times in this paper, we do not believe that any of the mechanisms
that collectively form the GPGP family of coordination algorithms are indispensable. What
we can do is evaluate the mechanisms on the terms of their costs and benefits to cooperative
problem solving both analytically and experimentally. This analysis and experimentation takes
place with respect to a very general task environment that does not correspond to a particular
domain. Doing this produces general results, but weaker than would be possible to derive in
a single fixed domain because the performance variance between problem episodes will be far
greater than the performance variance of the different algorithms within a single episode. Still,
this allows us to determine broad characteristics of the algorithm family that can be used to
reduce the search for a particular set of mechanism parameters for a particular domain (with or
without machine learning techniques). We will also discuss statistical techniques to deal with
the large between-episode variances that occur when using randomly-generated problems.

Our model of an abstract task environment has ten parameters; Table 1 lists them and the
values used in the experiments described in the next two sections.

Parameter Values (facilitation exps.) Values (clustering exps.)
Mean Branching factor (Poisson) | 1 1
Mean Depth (Poisson) 3 3
Mean Duration (exponential) 10 (110 100)
Redundant Method QAF Max Max
Number of task groups 2 (1510)
Task QAF distribution (20%/80% min/max) (50%/50% min/max)
(100%/0% min/max)
Hard CR distribution (10%/90% enables/none) (0%/100% enables/none)
(50%/50% enables/none)
Soft CR discribution (80%/10%/10% facilitates/hinders/none) | (0%/10%/90% facilitates/hinders/none)
’ (50%/10%/40% facilitates/hinders/none)
Chance of overlaps (binomial) 10% (0% 50% 100%)
Facilitation Strength 1.5.9 .5

Table 1: Environmental Parameters used to generate the random episodes

The primary sources of overhead associated with the coordination mechanisms include
action executions (communication and information gathering), calls to the local scheduler,
and any algorithmic overhead associated with the mechanism itself. Table 2 summarizes the
total amount of overhead from each source for each coordination mechanism setting and
the coordination substrate. L represents the length of processing (time before termination),
and d is a general density measure of coordination relationships. We believe that all of
these amounts can be derived from the environmental parameters in Table 1, they can also
be measured experimentally. Interactions between the presence of coordination mechanisms
and these quantities include: the number of methods or tasks in E, which depends on the
non-local view mechanism; the number of coordination relationships [CR| or the subsets
RCR,HPCR, SPCR, which depends on the number of tasks and methods as well; and
the number of commitments |C|, which depends on each of the three mechanisms that makes
commitments. The relationships between these quantities can be modeled and verified using
methods similar to those in [8].

SELEN

Mechanism setting | Communications | Information Gathering | Scheduler Other Overhead
substrate | 0 E-+idle L | O(LC)
nlv none | 0 0 0 0
some | O(dP) Edetect-CRs 0 O(T € E)
all | O(P) E detect-CRs 0 O(T e B)
comm min | O(C) 0 0 o(C)
7G | O(C+E) 0 0 O(C+E)
al | O(M € E) 0 0 O(M € E)
redundant on | O(RCR) 0 0 O(RCR * S + CR)
hard on | O(HPCR) 0 O(HPCR) | O(HPCR.» S + CR)
soft on | O(SPCR) 0 O(SPCR) | O(SPCR xS + CR)

Table 2: Overhead associated with individual mechanisms at each parameter setting

Deciding to add a mechanism. A practical question to ask is simply whether the addition
of a particular mechanism will benefit performance for the system of agents. Here we give
an example with respect to the soft coordination mechanism, which will make commitments
to facilitation relationships. We ran 234 randomly generated episodes (generated with the
environmental parameters shown in Table 1) with four agents both with and without the soft
coordination mechanism. Because the variance between these randomly generated episodes is
so great, we took advantage of the paired response nature of the data to run a non-parametric
Wilcoxon matched-pairs signed-ranks test [3]. This test is easy to compute and makes very
few assumptions—primarily that the variables are interval-valued and comparable within each
block of paired responses. For each of the 234 blocks we calculated the difference in the total
final quality achieved by each group of agents and excluded the blocks where there was no
difference, leaving 102 blocks. We then replace the differences with the ranks of their absolute
values, and then replace the signs on the ranks. Finally we sum the positive and negative ranks
separately. A standardized Z score is then calculated. A small value of Z means that there was
not much consistent variation, while a large value is unlikely to occur unless one treatment
consistently outperformed the other. In our experiment, the null hypothesis is that the system
with the soft coordination mechanism did the same as the one without it, and our alternative
is that the system with the soft coordination mechanism did better (in terms of total final
quality). The result here was Z = —6.9, which is highly significant, and allows us to reject the
null hypothesis that the mechanism did not have an effect.

Performance Issues. Another question is how the performance of a fully configured system
compares with optimal performance. While we have no optimal parallel scheduler with which
to compare ourselves, we do have a single agent optimal scheduler and a centralized, heuristic
parallel scheduler that takes the single-agent optimal schedule as its starting point. In 300
paired response experiments based on the same environmental parameters as the facilitation
experiments (Table 1), the centralized parallel scheduler outperformed our distributed, GPGP
agents 57% of the time (36% no difference, 7% distributed was better) using the total final
quality as the only criterion. The GPGP agents produced 85% of the quality that the centralized
parallel scheduler did, on average. These results need to be understood in the proper context—
the centralized scheduler takes much more processing time that the distributed scheduler and
can not be scaled up to larger numbers of methods or task groups. The centralized scheduler
also starts with a global view of the entire episode. We also looked at performance without

=46

any of the mechanisms; on the same 300 episodes the GPGP agents produced on average 1.14
times the final quality of the uncoordinated agents. These experiments had very low numbers
of enables relationships, which tend to hurt the uncoordinated agents, and also remember
that we are only looking at one performance measure—total final quality. Coordinated agents
execute far fewer methods because of their ability to avoid redundancy, but this does not show
up in final quality because there is no real-time pressure in these 300 episodes (we kept the time
pressure constantly low). The redundant execution of methods proves a much more hindering
element to the uncoordinated agents when acting under severe time pressure [4].

Examining the family’s performance space. Next we looked at the multidimensional per-
formance space for the family of coordination algorithms over four different performance
measures. Earlier we mentioned that although our simple initial parameterization results in
72 possible coordination algorithms, many of these are not statistically different from one
another in randomly generated environments. We applied two standard statistical clustering
techniques to develop a much smaller set of significantly different algorithms. The resulting
five ‘prototypical’ combined behaviors are a useful starting point in evaluating the family in a

new environment.

1 B 1
20] - 2 . . .
. T . .
] + |
g 10] £ L~—$— :
8] : < 17 —f T
g] £ ot : : !
§ 00 : g :) '
E 1 T d 1 . —t¥
E j - g .
S -1.0 3 . § .
22 . i
-2.0 - '
] 31
T T T ¥ I T T T
Balanced Mute Myopic Simple Tough Balanced Mute Myopic Simple Tough
20 ° . 3] ;
: —. . . — 2] . L] -] .
1.0 . H . .-
1 " . 8 - -
B .%B- [F —f 17 ~ . [.
Jood I R :
I : i '
LT e T
—"g R . gy x
= 1 - - 2 H ™ H
2.0] -
1 . 27 - T
-3.0 T — T 3 _ S : : —_—
Balanced Mute Myopic Simple Tough Balanced Mute Myopic Simple Tough

Figure 4: Standardized Performance by the 5 named coordination styles.

The analysis proceeded as follows: for 63 randomly chosen environments, we generated
one random episode and ran each of the 72 “agent types” on the episode (4536 cases). We

-47.

collected four performance measures: total quality, number of methods executed, number of
communication actions, and termination time. We then took this data and standardized each
performance measure within an environment. So now each measure is represented as the num-
ber of standard deviations from the mean value in that environment. We then took summary
statistics for each measure grouped by agent types—this boils the 4536 cases (standardized
within each environment) into 72 summary cases (summarized across environments). Each of
the 72 summaries correspond to the average standardized performance of one agent-type for
the four performance measures. We then used both a hierarchical clustering algorithm (SYS-
TAT JOIN with complete linkage) and a linear clustering algorithm (SYSTAT KMEANS) to
produce the following general prototypical agent classes (we chose one representative algorithm
in each class):

Simple: No commitments or non-local view, just broadcasts results.
Myopic: All commitment mechanisms on, but no non-local view.
Balanced: All mechanisms on.

Tough-guy: Balanced agent that makes no soft commitments.
Mute: No communication whatsoever®

KMEANS also produces the mean value of each performance measure for each group, so
you can in fact see that the non-communicating agents have a high negative mean "number-of-
communications” (-1.16-remember these were averaged from standardized scores) but execute
more methods on average and produce less final quality. They also terminate slightly quicker
than average. Our "Balanced" group, in comparison, communicates a little more than average,
executes many fewer methods (-1.29—way out on the edge of this statistic), returns better-than-
average quality and about average termination time. This is reasonable, as ‘avoiding redundant
work’ and other work-reducing ideas are a key feature of the GPGP algorithm.

Figure 4 shows the values of several typical performance measures for only the five named
types. Performance measures were standardized within each episode, (i.e. across all 72 types).
Shown for each are the means and 10, 25, 50, 75, and 90 percent quantiles. All agents’
performances are significantly different by Tukey Kramer HSD except for: Method Execution
(Simple vs. Mute), Total final quality (Balanced vs. Tough), Deadlines missed (simple vs.
mute) and (balanced vs. tough).

We are also analyzing the effect of environmental characteristics on agent performance.
Figure 5 shows an example of the effect of the a priori amount of overlap on the number of
method execution actions for the five named agent types. Note again that the balanced and
tough agents do significantly less work when there is a lot of overlap (as would be expected).
The performance of the tough and balanced agents is similar because (from Table 1) only half
the experiments had any facilitation, and when it was present was only at 50

4 Conclusions and Future Work

This paper discusses the design of an extendable family of coordination mechanisms, called
Generalized Partial Global Planning (GPGP), that form a basic set of coordination mechanisms

9This algorithm makes no commitments (mechanisms 3, 4, and 5 off) and communicates (mechanism 2)
only ‘satisfied commitments—therefore it sends no communications ever!,

-48%

-
.
@«
=}
.9 T
9
T 0 !
2 .)
‘é £
i
s =} ~ ¥
Q
+ R X
s 2 ’ :
-3
I I I i I] I I I I i

-0.1 0.1 0.3 0.5 0.7 0.9 1.1
Overlap

Figure 5: The effect of overlaps in the task environment on the standardized method execution performance by
the 5 named coordination styles (smoothed splines fit to the means).

for teams of cooperative computational agents. An important feature of this approach includes
an extendable set of modular coordination mechanisms, any subset or all of which can be
used in response to a particular task environment. This subset may be parameterized, and
the parameterization does not have to be chosen statically, but can instead be chosen on a
task-group-by-task-group basis or even in response to a particular problem-solving situation.
For example, Mechanism 5 (Handle Soft Predecessor CRs) might be “on” for certain classes
of tasks and ‘off” for other classes (that usually have few or very weak soft CRs). The general
specification of the GPGP mechanisms involves the detection and response to certain abstract
coordination relationships in the incoming task structure that were not tied to a particular
domain. A careful separation of the coordination mechanisms from an agent’s local scheduler
allows each to better do the job for which it was designed. A complete discussion of the
scheduler/decision-maker interface can be found in our companion paper [15]. We believe this
separation is not only useful for applying our coordination mechanisms to existing problems
with existing, customized local schedulers, but also to problems involving humans (where the
coordination mechanism can act as an interface to the person, suggesting possible commitments
for the person’s consideration and reporting non-local commitments made by others).
Application designers will find this general specification of partial global planning coordina-
tion behaviors easier to adapt to their domains than the original distributed vehicle monitoring
testbed implementation. What is required to use GPGP or similarly designed algorithms is a
local scheduler that can handle local and non-local commitments and can communicate via
task structures (the interface is fully described in [15]). GPGP also requires domain-dependent
code to detect potential coordination relationships to other agents and verify their presence
after non-local information has been received. This paper has outlined the overhead involved
with each mechanism, and discussed experimental techniques for demonstrating improved
performance in an application. Future work will involve claborating and validating models

-49-

of these coordination mechanisms that link environmental parameters to both overhead and
performance. We also discussed how to limit the initial search for a suitable application-specific
coordination algorithm by using prototypical algorithm family members.

Work not reported here includes the development of a load-balancing coordination mecha-
nism that works by providing better information to the agents with which to resolve redundant
commitments. More mechanisms, and more complex mechanisms are possible; for exam-
ple, mechanisms that work from the successors of hard and soft relationships instead of the
predecessors, or negotiation mechanisms. Mechanisms for behavior such as contracting are
also possible. As always, the important question will be “in what environments will the extra
overhead of these mechanisms be worthwhile.” Future work will also examine expanding the
parameterization of the mechanisms and using machine learning techniques to choose the
appropriate parameter values (i.e., learning the best family member for an environment).

References

[1] C. Castelfranchi. Commitments: from individual intentions to groups and organizations.
In Michael Prietula, editor, Al and theories of groups & organizations: Conceptual and
Empirical Research. AAAT Workshop, 1993. Working Notes.

[2] Philip R. Cohen and Hector J. Levesque. Intention is choice with commitment. Artificial
Intelligence, 42(3), 1990.

[3] W. W. Daniel. Applied Nonparametric Statistics. Houghton-Mifflin, Boston, 1978.

[4] Keith S. Decker. Environment Centered Analysis and Design of Coordination Mechanisms.
PhD thesis, University of Massachusetts, 1994.

[5] Keith S. Decker, Alan]J. Garvey, Marty A. Humphrey, and Victor R. Lesser. Effects of
parallelism on blackboard system scheduling. In Proceedings of the Twelfth I[JCAIL pages
15-21, Sydney, Australia, August 1991. Extended version in International Journal of
Pattern Recognition and Acrtificial Intelligence 7(2) 1993.

[6] Keith S. Decker and Victor R. Lesser. Generalizing the partial global planning algorithm.
International Journal of Intelligent and Cooperative Information Systems, 1(2):319-346,
June 1992.

[7] Keith S. Decker and Victor R. Lesser. Analyzing a quantitative coordination relationship.
Group Decision and Negotiation, 2(3):195-217, 1993.

[8] Keith S. Decker and Victor R. Lesser. An approach to analyzing the need for meta-level
communication. In Proceedings of the Thirteenth IJCAIL Chambéry, August 1993.

[9] Keith S. Decker and Victor R. Lesser. Quantitative modeling of complex computa-
tional task environments. In Proceedings of the Eleventh National Conference on Artificial
Intelligence, pages 217-224, Washington, July 1993.

450

[10] E. H. Durfec and T. A. Montgomery. Coordination as distributed search in a hierarchical
behavior space. IEEE Transactions on Systems, Man, and Cybernetics, 21(6):1363-1378,
November 1991.

[11] Edmund H. Durfee, Victor R. Lesser, and Daniel D. Corkill. Coherent cooperation
among communicating problem solvers. JEEE Transactions on Computers, 36(11):1275—
1291, November 1987.

[12] E.H. Durfee and V.R. Lesser. Partial global planning: A coordination framework for
distributed hypothesis formation. IEEE Transactions on Systems, Man, and Cybernetics,
21(5):1167-1183, September 1991.

(13] MarkS. Fox. An organizational view of distributed systems. [EEE Transactions on Systems,
Man, and Cybernetics, 11(1):70-80, January 1981.

[14]]. Galbraith. Organizational Design. Addison-Wesley, Reading, MA, 1977.

(15] Alan Garvey, Keith Decker, and Victor Lesser. A negotiation-based interface between
a real-time scheduler and a decision-maker. CS Technical Report 9408, University of
Massachusetts, 1994.

[16] Alan Garvey and Victor Lesser. Design-to-time real-time scheduling. JEEE Transactions
on Systems, Man, and Cybernetics, 23(6), 1993. Special Issue on Scheduling, Planning,
and Control.

(171 M. R. Genesereth, M. L. Ginsberg, and J. S. Rosenschein. Cooperation without com-
munication. In Proceedings of the Fifth National Conference on Artificial Intelligence, pages
51-57, Philadelphia, PA., August 1986.

[18] N. R. Jennings. Commitments and conventions: The foundation of coordination in
multi-agent systems. The Knowledge Engineering Review, 8(3):223-250, 1993.

[19] Paul Lawrence and Jay Lorsch. Organization and Environment. Harvard University Press,
Cambridge, MA, 1967.

[20] V.R. Lesser. A retrospective view of FA/C distributed problem solving. [EEE Transactions
on Systems, Man, and Cybernetics, 21(6):1347-1363, November 1991.

[21] Yoav Shoham. AGENTO: A simple agent language and its interpreter. In Proceedings
of the Ninth National Conference on Artificial Intelligence, pages 704—709, Anaheim, July
1991.

(22] Arthur L. Stinchcombe. Information and Organizations. University of California Press,
Berkeley, CA, 1990.

(23] Frankv. Martial. Coordinating Plans of Autonomous Agents. Springer-Verlag, Berlin, 1992.
Lecture Notes in Artificial Intelligence no. 610.

