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Abstract: The problem of transforming the knowledge bases of performance systems using
induced rules or decision trees into comprehensible knowledge structures is addressed. A
knowledge structure is developed that generalizes and subsumes production rules, decision trees,
and rules with exceptions. It gives rise to a natural complexity measure that allows them to be
understood, analyzed and compared on a uniform basis. This structure is a rooted directed acyclic
graph with the semantics that nodes are concepts, some of which have attached conclusions, and
the arcs are ’isa’ inheritance links With disjunctive multiple inheritance. A detailed example is
given of the generation of a range of such structures of equivalent performance for a simple
problem, and the complexity measure of a particular structure is shown to relate to its perceived
complexity. The simplest structures are generated by an algorithm that factors common concepts
from the premises of rules. A more complex example of a chess dataset is used to show the value
of this technique in generating comprehensible knowledge structures.

INTRODUCTION

This paper presents the continuation of research reported at previous KDD workshops on the development
of knowledge structures through the inductive modeling of databases (Gaines, 1991c; Gaines, 1991b).
Thf issue addressed is that of the Comprehensibility of the model to people, that is, whether the contents
of a model that performswell can be transformed into a communicable knowledge structure that provides
insights into the basis of the performance.

The Induct methodology (Gaines, 1989) for deriving rules directly from a database through statistical
analysis has proven to be effective in modeling large databases such as the 47,000 cases of the Garvan
thyroid medical records over ten years (Gaines and Compton, 1993). The simplicity of the computations
underlying Induct enables it to operate at ve~ high speed, on the one hand supporting interactive
development Of rules, and on the other enabling longitudinal data analysis studies to be undertaken such
as the incremental modeling of the Garvan data over a ten year period to determine its stationarity. The
performance of the derived models compares favorably with those developed by human experts and by
other empirical induction methodologies.

However, the models produced of significant databases typically have such large numbers of rules that
they are not comprehensible to people as meaningful knowledge from which they can gain insights into
the basis Of decision making. This problem is common to both the manually and inductively derived rule
sets, and seems intrinsic to the use of production rules as the basis of performance systems (Li, 1991).
Similar problems occur with equivalent decision trees where the basis of decision making is not apparent
when there are large numbers of nodes.

It is not obvious that an excellent performance system necessarily implies the existence of a
comprehensible knowledge structure to be discovered, Human practical reasoning is in major part not
knowledge-based (Gaines, 1993b), and in the knowledge acquisition community ’expertise transfer’
paradigms have been replaced in recent years by i~’knowledge modeling’ paradigms (Schreiber, Wielinga
and Breuker, 1993) that impute the resultant overt knowledge to the modeling process, not to some
hypothetical knowledge base within the expert. Clancey, who has played a major role in promoting this
paradigm shift (Clancey, 1989; 1993), has done so in part based on his experience in developing overt
knowledge structures from MYCIN rules to support GUIDON (Clancey, 1987a) as a teaching system
based on MYCIN. In critiquing MYCIN’s rules as not being a comprehensible knowledge structure,
Clancey remarks:
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"Despite the now apparent shortcomings of MYCIN’s rule formalism, we must remember that the program was
influential because itworked well. The uniformity of representation, so much the cause of the ’missing
knowledge’ and ’disguised reasoning’ described here, was an important asset. With knowledge so easy to
encode, it was perhaps the simple parametrization of the problem that made MYCIN a success. The problem
could be built and tested quickly at a time when little was known about the structure and methods of human
reasoning..... We can treat the knowledge base as a reservoir of expertise, something never before captured in
quite this way, and use it to suggest better representations." (Clancey, 1987b)

The development of excellent performance ~stems will remain a major practical objective regardless of
the comprehensibility of the basis of their performance. However, the challenge of increasing human
knowledge through developing understanding that basis remains a significant research issue in its own
right. Can one take a complex knowledge base that is difficult to understand and derive from it a better
and more copmprehensible representation as Clancey suggests? If so, to what extent can the derivation
process be automated7

This paper presents techniques for restructuring production rules and decision trees to generate more
comprehensible knowledge structures. In particular, a knowledge structure is presented that generalizes
and subsumes production rules, decision trees, and rules with exceptions. It gives rise to natural
complexity measures that allow themto be understood, analyzed and compared on a uniform basis. This
structure-is a rooted directed acyclie graph with the semantics that nodes are concepts, some of which
have attached conclusions, and the arcs are ’isa’ inheritance links with disjunctive multiple inheritance.

KNOWLEDGE STRUCTURES

In attempting to improve the comprehensibility of knowledge structures it would be beneficial to have an
operational and psychologically well-founded measure of comprehensibility. However, there are in
general no such measures. This is not to say that one haS to fait back on subjective judgment alone. There
are general considerations that smaller structures tend to be more comprehensible, coherent structures
more meaningful, those using familiar concepts more understandable, and so on. The internal analog
weights and connections of neural networks with graded relations of varying significance are at one
extreme of incomprehensibility. Compact sets of production rules are betterbut not very much so if there
are no clear relations between premises or obvious bases of interaction between the rules. Taxonomic
structu~s with inheritance relations between concepts, and concept definitions based on meaningful
properties, are probably most assimilable by people, and tend to be the basis of the systematization of
knowledge in much of the scientific literature. Ultimately, human judgment determines what is
knowledge, but it is not a suitable criterion as a Starting point for discovery since the most interesting
discoveries are the ones that are surprising. The initial human judgment of what becomes accepted as an
excellent knowledge structure may be negative. The process of assimilation and acceptance takes time.

One feature of knowledge structures that is highly significant to discovery systems is that unicity, the
existence of one optimal or preferred structure, is the exception rather than the rule. There will be many
possible structures with equivalent performance as models, and it is inappropriate to attempt achieve
uaicity by an arbitrary technical criterion such as minimal size on some measure. The relative evaluation
of different knowledge structures of equivalent performance involves complex criteria which are likely to
vary from caseto case. For example, in some situations there may be preferred concepts that are deemed
more appropriate in being usual, fatal!" iar, theoretically more interpretable or coherent, and so on. A
structure based on these concepts may be.preferred over a smaller one that uses less acceptable concepts.
Thus, a discovery system that is able to present alternatives and accept diverse criteria for discrimination
between them may be preferred over one that attempts to achieve unicity through purely combinatorial or
statistical criteria. On the other hand, it is a significant research objective in its own right to attempt to
discover technical criteria that have a close correspondence to human judgment.

These have been the considerations underlying the research presented in this paper: to generate
knowledge structures that have a form similar to those preferred by people; to explore a variety of
possible structures and accept as wide a range of possible of external criteria for assessing them
automatically or manually; and to develop principled statistical criteria that correspond to such
assessments to the extent that this is possible.
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KNOWLEDGE STRUCTURES

The starting point for the research has been empirical induction tools that generate production rules or
decision trees. One early conclusion was that a hybrid structure that had some of the characteristics of
both rules and trees was preferable to either alone. This structure can be viewed either as a generalization
of rules allowing exceptions, or as a generalization of trees such that the criteria at a node do not have to
be based on a single property,or be mutually exclusive, and the trees are generalized to partial orders
allowing branches to come together again. These generalizations allows substantially smaller knowledge
structures to be generated than either rules or trees alone, and overcomes problems of trees in dealing with
disjunctive concepts involving replication of sub-trees.

Figure 1 exemplifies this knowledge structure, termed an exception directed acyclic graph (EDAG). 
may be read as a set of rules with exceptions or as a generalized decision tree. Its operational
interpretation is that one commences with the root node at concept 0, and places conclusion O on a
provisional conclusion list. Following the arrow down to the left to concept 1, one evaluates the concept
and, if it applies, replaces the provisional conclusion from that path with the specified conclusion. Then
one follows the arrows down again to concepts 3 and 4 applying the same logic. Multiple arrows may be
conceptualized as being evaluated in parallelBit makes no difference to the results if the graph is
followed depth-first or breadth first.

I conceptO "~
conclusion 0 /
(both optional) 

concept 1
conclusion 1 concept 2

concept 3 i. concept 4- conclusion-5 concept 6 concept 7
conclusion 3 "concluslon 4 conclusion 7J

concept 8
1conclusion 8 concept 9 concept 10

concept 12 concept 13 I

conclusion

Figure 1 Knowledge structure--exception directed acyclic graph

Several features of EDAGs may be noted:
¯ Concepts at a branch do not have to be mutually exclusive so multiple conclusions can arise. An

interesting example is conclusion 5 which is concluded unconditionally once concepts 0 and 2 apply.
¯ As shown at concept 4, the structure is not binary. There may be more than two nodes at a branch.
¯ As shown at conclusion 11, the slmc~e is not a tree. Branches may rejoin, corresponding to rules with

a common exception or common conclusion.
¯ As shown at concept 2, a concept does not have to have a conclusion. It may just be a common factor to

all the concepts of its child nodes. As in decision trees, not all concepts in an EDAG are directly
premises of rules.

¯ As shown at conclusion 11, a conclusion does not have to have a concept. It may just be a common
conclusion to all the concepts on its parent nodes.
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¯ As shown at the node between concepts 6 and 12, it may be appropriate to insert an empty node to
avoid arrows crossing.

¯ The notion of "concept" used is that of any potentially decidable predicate; that is, one with truth
values, true, false or unknown. The unknown case is significant because, as illustrated later, conclusions
from the EDAG as a whole may be partially or wholly decidable even though some concepts are
undecidable in a particular casemusually because some information is missing for the case.

A set of production rules without a default and without exceptions forms a trivial EDAG with one, empty
initial node having an arrow to each rule. An ID3’style decision tree forms an EDAG that is restricted to
be a tree, with the set of concepts fanning out from a node restricted to be tests of all the values of a
particular attribute. Rules with exceptions form an EDAG in which every node has a conclusion. Rules
with exceptions with their premises factored for common concepts (Gaines, 1991b) form a general
EDAG.

The direction of arrows in Figure 1 indicates the decision-making paths. However, if the arrows are
reversed they become the ’isa’ arrows of a semantic network showing inheritance among concepts, with
multiple inheritance read disjunctively. For example the complete concept leading to the conclusion 11 is
(concept 0 ^ concept I ^ concept 4) ^ (concept 9 v concept 10).

The complete concept for nodes with child nodes involves the negation of the disjunction of the child
nodes, butnot of their children. For example, the complete concept leading to the conclusion 1 is
(concept 0 ^ concept 1 ^ --,(concept 3 v concept 4)), with concepts 8 through 10 playing no role.

This last result is important to the comprehensibility of an EDAG. The ’meaning’ of a node can be
determined in terms of its path(s) back to the root and its child nodes. The other parts of the tree are
irrelevant to whether the conclusion at that node will be selected. They remain potentially relevant to the
overall Conclusion in that they may contribute additional conclusions if the structure is not such that
conclusions are mutually exclusive.

From a psychological perspective, the interpretation of the EDAG may be seen as each node providing a
well-defined ’context’ for its conclusion, where it acts as an exception to nodes back to the root above it,
and it has as exceptions the nodes immediately below it. This notion of context is that suggested by
Compton and Jansen (1990)in their analysis of ’ripple-down rules’, the difference being that EDAG
contexts are not necessarily mutually exclusive.

KNOWLEDGE STRUCTURES

Induct is used to generate EDAGs through a three-stage process. First, it is used to generate rules with
exceptions. Second, the premises of the rules are ,factored to extract common sub-concepts (which are not
necessarily unique, e.g. A ̂  B, B ^ C and C ̂  A may be factored in pairs by A, B or C). Third, common
exception structures are merged. The second and third stages of factoring can be applied to any set of
production rules represented as an EDAG, and it is appropriate to do so to C4.5 and PRISM rules when
comparing methodologies and illustrating EDAGs as knowledge structures.

The familiar contact lens prescription problem (Cendrowska, 1987) will be used to illustrate the EDAG 
a knowledge structure. Figure 2shows the ID3 decision tree for the lens problem as an EDAG, and Figure
3 shows thePRISM production rules as an EDAG. The representation in itself adds nothing to the results,
but the examples illustrate the subsumption of these two common knowledge structures. The
representation of the rules can be improved by factoring the premises to produce the EDAG shown in
Figure 4.

Figures 2 through 4 are trivial EDAGs in the sense in that no exceptions are involved. More interesting
examples can be generated using C4.5’s methodology of: reducing the number of production rules by
specifying a default conclusion; removing the ruleswith that conclusion; and making the other rules
exceptions to the default. This can be applied to the PRISM rules in Figure 4 by making "none" the
default and removing the four rules with "none"as a conclusion on the left. Both PRISM and C4.5 then
generate the same set of rules with exceptions which can be factored into the EDAG shown in Figure 5.
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{,..,0,=’;O,,o:r..<’ o.<’ }I ,..,,,.,,.,or,.,..., J
{.=0°.,.°.no,=,0,o1 =,0°==:=,0~.,° }

age=young " 1 fage=pre-presbyoplc~ ( ........ ,, ....,,, 1 (~.M,.w,.,u,,.,-,.,,,,~rm,".,,,.e/f prescription=myope lelqm,,~oft ) t hme=aoft J t "~"-~’ .... y-,v,,, j Lv.,~,-,,~ ,w,-,.,v-, ,--.,v ~ lens,, hard J

preecdptlon=myope ~ ~rescrlpUon=hypermetrope~lF age=presbyopic ~ IFage=pre-presbyoplc~ ~ age=young
t’ lene-none . Jt ,,he=con it. lena=no,, Jr, lens,none )t lene=herd

Figure 2 ID3 contact lens decision tree as EDAG

t

| lene=none /I I I I I/ . age=young

,. i :

i r i

f astigmatism=astigmaticII I ’ " I tear production=normal 1
< I prescnptlon=nypermetrope I I I ,, ,," ¯ I astigmatism not astigmaticI/ age=presbyoplc I [ I .... I prescription=hypemietrope/

t
lens=none

J~ ~ ’, l, lene=soft )
" - ~" aatigmattsm=asilgmallc /~ tearpr°cl~al IIF tearproducUon=normal

[ prescdptlon=hypermetrope / I astigmatism--not astigmatic i [astigmatism=not astigmatic/
¯ [ . age=pre-presbyoplCi[ ~pre-presbyopic l/ age=young /
t ’ lens=none Jt

,ens=ioft ,J k
lens=eoft j

Figure 3 PRISM contact lens production rules as EDAG

{

I lene=none 1

}
I tear production=normal ]

:raslig n~lilsm=not astigmatic} { astigmalism=astigmatlc }

{ ,.n..o. ) { ,....,,.ro 
Figure 4 PRISM contact lens production rules, factored as EDAG
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I lens=none
1

I tear production=normal I

Iastlgmat/sm-not astigmaticl I astigmatism---astigmatic 1

age=young

1(a’~ge=yOung I pre’presbyOplcl’ l(l:iescd ption=myope 31)

[prescdptl°n=hypermetr°;ll [

I lens=soft 1 I leneihard 1

Figure 5 PRISM/C4.5 contact lens rules with default, factored as EDAG

Induct generates multi-level exceptions in that an exception may itself have exceptions. Figure 6 shows
two EDAGs generated by Induct from the 24 lens cases. On the left of each EDAG the "soft" conclusion
is generated by a simple concept that has an exception. The left EDAG is generated by Induct from the 24
possible eases. The right EDAG is generated by Induct when the data is biased to have a lower proportion
of the "hard" exceptions (46 eases usedn2*24 with the 2 examples of the "hard" exception removed
from the second setmlogieally unhanged, but the statistical test that Induct uses to determine whether to
generate an exception is affectedmthe exceptions are now statistically more "exceptionable").

I lens=none
1

( ]

lone, soft astigmatism=astigmatic

prescdption=myope
ags=presbyoplc .

lens,none ,

age=young¯ , ’} I

prescrlptlon=myope~ "~

lenkhsrd 1

Figure 6 Two forms of Induct rules with exceptions, factored as EDAG

I lens=none
1

I tear production=normal 1

~as~mat~e==r~to~tStig maticl [ astig mla;inss=m~r~g rustic1

¯ prescdption=myope ~ (’prescrip.tlon=hypermetrope
¯ ag.e=presbyopic /L lens=none

,~mns=none
.)

COMPLEXITY MEASURES FOR EDAC~

The results shown in Figures 2 through 6 make it clear that many different EDAGs with the same
performance can be derived from existing empirical induction methodologies. It is also apparent that
some are substantially simpler than others, and that the simpler one present a more comprehensible
knowledge structure. Figures 5 and 6, in partieular, illustrate that simple comprehensible knowledge
structures are not unique---each represents a reasonable basisfor understanding and explaining the contact
lens decision methodology. Figure 6 left may appear marginally better than the alternatives in Figures 5
and 6 right, but one can imagine a debate between experts as to which is best~Figure 5 has only one
layer of exceptionsmFigure 6 right is more balanced in its treatment of astigmatism.
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It is interesting to derive a complexity measure for an EDAG that corresponds as closely as possible to the
psychological factors leading to judgments of the relative e0mplexity Of different EDAGs. As usual, the
basis for a structural complexity i measure is enumerative;: that iwe count the components in the
representation (Gaines, 1977). The obvious components are the n0de Symbols (boxes), the arc symbols
(arrows): and the concept and conclusion clauses. In addition, since the graphs are not trees and branches
can rejoin with possible line crossings causing vis~ confusfmn, the cyclone number (Berge, 1958) 
¯ considered. It maybe regarded as counting (undated) cycles or as indicating the excess of arcs over
those necessary to join nodes. Induct also allows the option of adisjunction of values within a clause, and
such a disjunction is weighted by the number of values mentioned, e.g. xffi5 counts 1, x¢ {5, 8} counts 2,
and x~ {5, [8, ’12]} counts 3 (where [8,12] specifiesthe interval from 8 through 12).

The derivation of an overall complexity measure from these component counts has to take into account
the required graph reductions which should lead to Complexity measure reductions. The basic
requirements are shown in Figure 7,and it is apparent that clause reduction should dominate, cycle
reduction needs to be taken into account with lesser weight, andnode reduction with still lesser weight.
One suitable formula is:

complexity of an EDAG = (clauses x 4 + cycles x 2 + nodes = 1)/5

where the -1 and scaling by 5 are normalization constants.

(1)

Condensation
Nodes 2 -> 1
Arcs 1 -> 0
cC~sules 0->0

a~usesses 2 -> 2 8 -> 7
Complexity 1.8-> 1.6 Complexity 6.8-> 6.2

Premise Facto#ng Conclusion Factoring Cycle Reduction
Nodes 3 -> 4 Nodes 3 -> 4 Nodes 5 -> 6
Arcs 2 -> 3 Arcs 2 -> 4 Arcs 6 -> 6

0->0 ~ C aC~uum 0->1
cC~ades

2->1
6 -> 5 ¯ uses 8 -> 8¯ Complexity 5.2 -> 5.0 Complexity 8.0 -> 7.8

©

Figure 7 Graph reductions required to correspond to complexity measure reductions

For standard decision trees and production rules there are relations between the numbers in formula (1)
that allow one to give the complexity measure more specific interpretations.

complexity of decision tree = number of nodes + 0.8 x number of terminal nodes (2)
complexity of production rules = 0.8 x number of clauses + 0.2 x number of rules (3)

These both seem intuitively reasonable:as reflecting natural components of the structural complexity of
trees and rule sets. However, they are somewhat arbitrary, and it mould be appropriate to conduct
empirical psychological experimems with a range of EDAGs and evaluate the correlation between the
undei’standing of knowledge n~asured in various ways and the complexity measure developed here.
Sufficient data would also allow other complexity measures to be evaluated.

Figure 8 showsthe component counts and the com~ted complexity measures for the solutions to the lens
problems shown in Fibres 2 through 6. ~e C6mputed, eomplexity measure does appear to have a
reasonable correspondence tO the variations in complexity that are subj~tively apparent.
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Hgure 8 Comparison ofcomplexity of contact lens EDAGs

Complexity
(4C+2X+N

d)/s
21.2

29.0

19.4

11.4

10.6
i

11.6

A CHESS EXAMPLE

The contact lens example is useful for illustration but too simple for the significance of the complexity
reduction to be evaluated. This section presents a somewhat moreComplex example based on one of
Quinlan’s (1979) chess datasets that Cendrowska (1987) also analyzed with_Prism. The data consists 
647 crees of a chess end game described in terms of four 3-valued :and three 2-valued attributes leading to
one of two conclusions. All the solutions described are 100% correct.

Figure 9 shows the 30 node decision treeproduced by ID3.and Figure 10 shows the 15 rules produced by
C4.$ for the chess data. Cendrowska (1987) reports a substantiallyiarger tree and the same number 
miss with some additional clauses.

Figure 11 left and center shows the rules produced by C4.5 factored in 2 ways. The EDAG at the center
introduces an additional (empty) node to make it clear that the possible exceptions are the same on both
branches. Figure 11 right shows an EDAG produced by Induct. AII three EDAGs are interesting in not
being trees and involving different simple presentations of the same knowledge.

. line = 2: safe (324.0)
llne = 1:

r>>k = 2: safe (162.0)
r>>k = 1 :

r>>n = 2: safe (81.0)
r>>n = 1:

k-n ffi i:
n-wk = 2: safe (9.0)
n-wk = 3: safe (9.0)
n-wk = I:

k-r = i: safe (2.0)
k-r = 2: lost (3.0)
k-r = 3: lost (3.0)

k-n = 2:
n-wk = 2: safe (9.0)
n-wk = 3: safe (9.0)
n-wk = 1:

k-r = 2: lost (3.0)
k-r = 3: lost (3.0)
k-r ffi 1:

r-wk = I: lost (I.0)
r-wk ffi 2: safe (I.0)
r-wk = 3: safe (1.0)

k-n = 3:
k-r = 2: lost (9.0)
k-r = 3: lost (9.0)
k-r = 1:

r-wk = 1: lost (3.0)
r-wk ffi 2: safe (3.0)
r-wk = 3: safe (3.0)

Figure 9 ID3 chess decision tree
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r>>n = 2 -> safe
r>>k = 2 -> safe
line = 2 -> safe

k-n = 1 & n-wk = 2 -> safe
k-n = 1 & n-wk = 3 -> safe

k-r = 1 & r-wk = 2 -> safe
k-r = 1 & r-wk = 3 -> safe
k-n = 2 & n-wk = 2 -> safe
k-n = 2 & n-wk = 3 -> safe

k-r = 2 & n-wk = 1 & line = 1 & r>>k = 1 & r>>n = 1 -> lost
k-r = 3 & n-wk = 1 & line = 1 & r>>k = 1 & r>>n = 1 -> lost

n-wk = 1 & r-wk = 1 & line = 1 & r>>k = 1 & r>>n = 1 -> lost
k-n = 3 & r-wk -- 1 & line = 1 & r>>k = 1 & r>>n = 1 -> lost

k-n = 3 & k-r = 2 & line = 1 & r>>k = 1 & r>>n = 1 -> lost
k-n = 3 & k-r = 3 & line = 1 & r>>k = 1 & r>>n = 1 -> lost

Figu~ 10 C4.5 chess rules

sa~ ]

f ,,n.-t 1
/ r>>k=t J

L n,>n-t J

.t ~, ,{-.][- ,}
¯ ,, ~ -~>~ +

{k-r’2,3 ] { r-wk-1 ]

[’*,*]

[..-] [-]
f line-t 1
| r>>k=t /

L ,>>,.t j

[ ~.°.s 1[ °.,., ] [ ~.°:~ 1[ ~,:, ]

{, ,1 [" ]
c ]

{ - ]
Figm-e 11 Chess rules with exception, factored as alternative EDAGs
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N
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16
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9
!’

8

7
i

¯ 7S
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X=A-N+I

0

0

o
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C
130
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7O
30 f
11

9

9

7

0 50

¯ 3 12

3 10

2 10

1 11

Complexity
(4C+2X+N

-1)/S

119.6
61.4

59.0

46.0

12.4

10.4

10.2

10.4

. Figure 12 Comparison Of complexity of lens EDAGs
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Figure 12 shows the complexities of various EDAGs solving the chess problem. The decision tree
published by Cendrowska (]987)!s more complex than that Produced by ID3. Pp,.ISM generates the same
15 production rules as does C4.5 except that twoof the rules have redundant clauses. This has a small
effect onthe relative complexity of the production rules, but a larger effect on that of the factored rules
since those from pRISM do not ̄ factor as well because of the redundant clauses. The three solutions
shown in Figure 11 are Similar in complexity as one might expect. They are different, yet equally valid,
ways of representing the solution.

The reduction between the tree in Figure 9 or the rules in Figure 10 and the EDAGs in Figures 11 does
seem to go Some way to meeting Michie’s objections to trees or rule sets as knowledge structures that
Quinlan (I99I)cites in the preface of the book from KDD’89. It is more plausible to imagine a chess
expert using the decision procedures of Figure 11 thanthose of Figures 9 or 10.

:: INFERENCE WITH EDAGs--UNKNOWN VALUES

Inference with EDAGs when all concepts are decidable is simple and has already been described.
H0wcver, iinference when some concepts are unknown as tol/their truth values involves some subtleties
that are significant. Consider the EDAG of Figure 13 where Concept-1 is unknown but Concept-2 is true
and the attached Conclusion is the same as the default. One can then infer Conclusion = A regardless of
what the truth value of Concept- 1 might be.

I nou.o° .1
,., I ej co ept-1 -- u known

f ). lC0nelualon. A) Concept-2 = "l’rue
D

Infer Conclusion ffi A, even though Concept-1 is unknown

Figure 13 Inference with unknown values

The required reasoning is trivial tO implement andis incorpo~ in the EDAG-inference procedure of
(Gaines, 1991a; Gaines, i993a), a KL-ONE~Iike knowledge repre~ntation server. The evaluation 

a concept as true, false or unknown is common in such ̄systems. It is simple to mark the EDAG such that
:a node is disregarded if: it has an unknown Concept but has a child node that is defmitely true; or it has the
tame conclusion as another node Whose concept is true.

.... The importance of pruning the list of possible conclusions is that it is the basis of acquiring further
information, for example, by asking the user of the system. It is ~mportant notto request information that
may be expensive to obtain but is irrelevant to the conclusion, Cendrowska (1987) makes this point

¯ strongly .in comparing modular rules with deci’sion trees; that, for example, in contact lens prescription the
i’ Bment of tear produa!’on is tir~e-consuming and unpi~ and shouldbe avoided if possible. She

i
notes that it is not required in the 3 rules produced by PRISM shown at the lower left of Figure 3 but is

¯ ~. the first amilmteUutted i~ the ID3 decision tree of Figure 2. She argues that the tree requires the testing of
this attn’Imte unnecessarily in certain cases.

However. the three decidable cases with unknown values of tear production (corresponding to the
~ premises of the three rules on the lower left of Figure 3)are all correctly evaluated by the EDAG of

Figure 2 using the reasoning defined above, asthey are by all the other EDAGs of Figures 3 through 7.
The’problem Cendrowska raises is a question of properly using the tree as a basis for inference, rather
than a distinction between trees and production rules.
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Since the complexity figures in Figure 8 indicate that the PRISM roles are. on one reasonable measure,
more ̄complex than the ID3 ~e, it would seemthat the arguments for roles being better than trees are not
justified. Certainly the highly restrictive/standard ~eision tree can be improved in Comprehensibility by
the use of exceptions and factoring, but whether the resultant structure is a more general rule, or a set of

¯ m!es with ezaeptions, is a matter of perspective.

TI~ simple pruning procedure described above is sufficient todeal with the tear production problem
raised by Cendrowska. However, it is inadequate tO properly account for all tbe nine decidable cases with
unknown values (correspondingto:tbe premises of the rules in Figure 3). For example, someone whose
tear production is normal, astig~sm is asti~ and age isyoung but whose prescription is unknown
ghould be inferred as lens is hard. HOwever, this inference cannot be made with the ID3 tree of Figure 2
using the procedure described above alone. KRS copes with this situation by keeping track of the relation
between Child nodas that are such that 0he of them must be true, In the case just defined it infers that the
collusion is lens is hard because the two nodes with lens = hard conclusions at the lower right of Figure
2 are both possible, one of them must be true, and both have the same conclusion.

KRS also disregards a node if the conclusion is already true of the entity being evaluated, again to prevent
an unnecessary attempt to acquire further information.r The four strategies described are such as to reduce
the list of possible conclusions to the logical minimum, and form a complete inference strategy for
EDAGs.

It should be noted that the completeness of inference is dependent on the possibility of keeping track of
relations between child nodes. This is Simple for the class!ficati0n of single individuals based on attribute-
value data. It is far more complex for EDAG-baSed reference with arbitrary KL,ONE knowledge
structures involving related individuals, where it is difficult to keep¯ track Of all the relations between
partially open inferences. This corresponds tO managing the, set Of possible extensions of the knowledge
base generated by resolving the unknown concepts, and is inherently intractable.

.- CONCLUSIONS

_ The problem of transforming performance systems based on induced rules or decision trees into
¯ comprehensible knowledge structures have been addressed. A knowledge Structure, the EDAG, has been
develol~d that generahzes and subsumes production ruleS, decision, trees, and rules with exceptions. It

: gives rise to a natural complexity measure that allows them to be understood, analyzed and compared on a
" uniform basis. An EDAG is a rooted directed acyciic graph=wi~ the semantics that nodes are concepts,

some of which have attached conclusions and the arcs axe hsa" tnhen ce¯ . " i ii , ! " ’ Ran l~:with disjunctive multiple
inheritance. A detailed example has been givenof tbe generation ofa range of such structures of
equivalent performance for a simple problem~ and the Complexity measure of a particular structure have
been shown to relate to its perceived complexity. The simplest structures are generated by an algorithm

- that factors co~n concepts from the: premises:of rules. A second example of a chess dataset was used
to show the value of this technique in generatingcomprehensibie knowledge structures.

It is suggested that the jtechniques described in this paper will be useful in allowing knowledge structures
! developed by empirical induction that have good performance but are not humanly.comprehensible to be

U~nsfonned into ones that may be more comprehensible.

A referee raised the question of the relative effectiveness of c4.5 and Induct, and it is appropriate to
comment briefly on this. There were two motivations underlying the development of Induct. First, to
develop a high speed induction engine for usein interactive knowledge acquisition with large datasets.
,%Condi to g~--n~te knowledge structures that reflected human conceptual frameworks.

" The first objective was addressed by extending the techniques of PRISM to generate rules directly from
the data rather than by post-processing: Of a decision tree, and by Using data structures (bit maps) that
speeded the computations required. On large datasets InduCt is generally over !00 times faster than C4.5

¯ ’i : in generating rules with equivalent performance. However, the complexity analysis of the algorithms is
¯ similar, and the two could be made comparable in speed by applyingthe bit map data structures in a CA.5

implementation.
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The second objective was addressed by: deVeloping rules with exceptions using a statistical methodology
to determine whether an over-general: rule ihaving error cases .is to be specialized by adding additional

r premise clauses, or left as it is With the exceptioneases being covered by additional rules. The statistical
. test used is to Calculate whether a rule is successful by chance (Gaines, 1989), and to compare this

probability for the rule with errors with. those for therulesobtained by adding clauses to it.

What.this paper shows is that, for some datasets, the second objective can also be achieved by post-
processing the rule Sets developed using algorithms :Such as those of C4,5 to generate EDAGs that are
~mbstanfially simpler andhave a hierarchical structure similarto that of human conceptual frameworks~
Experiments are underway to evaluate the post.processing :When applied rules derived from data having
m~y decision outcomes Where multi’level exceptions seem to generate the most compact, and meaningful
knowledge structures.
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