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Abstract

This paper presents an approach that uses metaqueries to integrate inductive learning with
deductive database technology in the context of knowledge discovery from databases. Meta-
queries are second-order predicates or templates, and are used for (1) Guiding deductive data
collection, (2) Focusing attention for inductive learning, and (3) Assisting human analysts in
the discovery loop. We describe in detail a system that uses this idea to unify a Bayesian Data
Cluster with the Logical Data Language (LDL++), and show the results of three case studies,
namely: discovering regularities from a knowledge base, discovering patterns and errors from
a large telecommunication database, and discovering patterns and errors from a large chemical
database. .

1 Ix.ltroduction

Recent progress in knowledge discovery from databases (e.g., [2, 7]) has shown that inductive hy-
potheses generation (bottom-up) and deductive hypotheses verification (top-down) are both crucial
components for effective discovery systems. Inductive learning is essential for generating hypotheses
from data automatically, while on the other hand, deductive database technology is a natural tool
for gathering evidence in support of existing hypotheses. However, most discovery systems, except
perhaps Recon [5), do little towards integrating these components. Rather, the user often has to
make a choice between a top-down or bottom-up approach at the outset, and the system makes no
attempt to exploit the synergy between these two intrinsically related components.

In this paper, we propose an approach that addresses the integration of the inductive and
deductive components via second-order predicates called metagqueries. A metaquery in essence
is a predicate template. For example, in the metaquery P(z y) A Q(y 2) = R(z z), P,Q, and
R are variables that can be bound to any predicates. As shown in Figure 1, metaqueries serve
as the link between the inductive and deductive aspects of knowledge discovery, effectively fa-
cilitating a deductive-inductive discovery loop. Metaqueries outline the data collecting strategy
for the deductive part of the loop; they serve as the basis for the generation of specific queries
which are obtained by instantiating the variables in the metaqueries with values representing ta-
bles and columns in the database of interest. These instantiated queries are then run against the
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Figure 1: Using Metaqueries To Integrate Induction And Deduction In A Discovery Loop

database to collect relevant data. Similarly, metaqueries also serve as a generic description of the
class of patterns to be discovered and help guide the process of data clustering and pattern gen-
eration in the inductive part of the loop. The patterns discovered from the database adhere to
the format of the current metaquery. For example, one possible result of the above metaquery is
citizen(z y)AofficialLanguage(y z) =>speaks(z z), where “citizen,” “officialLanguage,” and “speaks”
are relations that bind to P, @, and R respectively in the current database.

Metaqueries can be specified by human experts or alternatively, they can be automatically
generated from the database schema. Either way, they serve as a very important interface between
human “discoverers” and the discovery system. Using metaqueries, human experts can focus the
discovery process onto more profitable areas of the database; the system generated metaqueries
provide valuable clues to the human expert regarding good start points for the database searches
and also serve as the evolutionary basis for the development of user specified metaqueries more
attuned to the discovery goals as envisaged by the human expert.

The above ideas are implemented in a system called the Knowledge Miner (KM). The induction
part of KM is an unsupervised Bayesian Data Cluster, and the deductive part of KM is a state
of the art deductive database technology called LDL++, which is well suited for both knowledge
representation and data querying. The patterns or relations to be discovered are probabilistic impli-
cation rules. Users can either type their metaqueries directly, or have the system run automatically
(i.e., let KM generate its own metaqueries).

In the rest of this paper, Section 2 gives an overview of the KM framework and its various com-
ponents. Sections 3 and 4 describe in detail the LDL++ language and the unsupervised Bayesian
Data Cluster, respectively. Sections 5 to 7 present three case studies in the application of this ap-
proach to knowledge discovery in a knowledge base, a telecommunication database, and a chemical
database respectively. Finally, the paper is concluded with a set of open problems associated with
this approach and our plan for future work.
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Figure 2: Knowledge Miner: A MetaQuery-Driven Framework

2 Knowledge Miner: A MetaQuery-Driven Framework

In this section, we give an overview of the metaquery driven framework, and a specific system called
“Knowledge Miner” that implements the ideas described above.

Figﬁre 2 illustrates the configuration of Knowledge Miner. Given a database and its schema,
the metaquery generator suggests a series of valid metaqueries. Users can either pick some of the
suggested metaqueries or they can specify their own metaqueries to be run.

On being provided with a metaquery as input, the instantiator generates a set of corresponding
LDL++ queries by instantiating the predicate variables in the metaquery with relevant table names
and column names as appropriate. These LDL queries are then run against the database to gather
the data in the desired fashion. The resulting data is fed to the Bayesian Data Cluster, which

. classifies the data into classes and then passes the classification information to the Probabilistic
Rule Constructor. The constructor then builds relations and patterns in the format specified in
the current metaquery. The classification information produced by the Bayesian Data Cluster can
also be stored persistently in a database.

Consider, for example, a database that has 4 tables, each with an arity of 2. Suppose that tablel
and table2 specify ingredients of chemical compounds, and table3 and table4 specify properties of
compounds (These facts can be presented to KM by experts or be extracted automatically from the
schema by the metaquery generator). If we are interested in finding the relation between ingredients
and properties, then a proper metaquery is as follows:

MQ[ingredients(X C1C2) = properties(XY'), valueCluster(Y)]

where X and Y are variables, C1 and C2 are constants, and valueCluster specifies a list of variables
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whose values need to be clustered in the final results. Given this metaquery, the instantiator
instantiates it into a series of LDL queries with varibles bound to appropriate table and column
names. In the current example, such LDL queries are:

table1(X, C1), table2(X, C2) = table3(X,Y)
tablel(X, C1), table2(X, C2) = table4(X,Y)

where C1 and C2 are constants, X, and Y are variables. Since valueCluster contains the variable
Y, the system has to determine the probabilistic distribution of the values of Y for each LDL rule.

Each rule is run against the database, and a set of values that satisfy the constraints on the left
side of the rule is fed into the Bayesian Data Cluster. The cluster classifies these values into a set of
classes, each with a mean value and a.variance. For example, when C1=‘BX89’ and C2=‘GF102’,
the Y values that satisfy the first rule may be classified into two classes: (my,v1,¢;) and (ma, v3,¢3),
where m; are mean values, v; are variances, and ¢; are the counts of values that fall into the class.

These results are then fed into the Rule Constructor, which uses the current metaquery as a
template to generate the final discovered rules. For example, suppose the two classes generated
from classification are: (m;=2.4, v;=3.5, ¢;=388) and (m=202.0, v2=0.5, ¢;=12), then two rules
constructed using the metaquery may look like these:

(P,=0.97) ingredients="BX89’&%‘GF102’ = Distribution(table3,column?2)=(2.4, 3.5)
(P,=0.03) ingredients=‘BX89’&‘GF102’ = Distribution(table3,column2)=(202.0,0.5)

where P; is the probability of each rule, defined as P; = ¢;/ 3_; ;.

We now discuss each of the components of KM in detail. In particular, the following two
sections cover the LDL++ language and the Bayesian Data Cluster. The Metaquery Generator
will be discussed after the presentation of experimental results obtained using KM.

3 The LDL++ Deductive Database System

The LDL++ system is a deductive database system based on the integration of a logic programming
system with relational database technology. It provides a logic-based language that is suitable for
both database queries and knowledge representation. More details on the LDL++4 system and
language can be found in [1, 6, 14, 15]. In this section, we will briefly describe some of the salient
aspects of the LDL++ system as relevant to KM and also highlight the benefits of using LDL++
in the Knowledge Miner framework.

The LDL++ query language is based on Horn clause logic and a LDL++ program is essentially
a set of declarative rules. For example, the following rules

ancestor(X,Y) «— parent(X,Y).
ancestor(X,Y) « ancestor(X,Z),parent(Z,Y).

specify that a new relation ancestor/2 can be defined based on the relation parent/2. X, Y and
Z are variables and ancestor and parent are predicate symbols. By declarativeness, we mean that
the ordering between the rules is unimportant and will not affect the results returned. Deduction
of all values of ancestor/2 is achieved through an iterative bottom-up execution model.

The language supports a rich set of complex data types such as complex objects, lists and sets
in addition to other basic types such as integer, real and string. Examples of these complex types
are rectangle(1,2), [1,2] and 1,2 respectively.

With such a rich set of data types, the LDL++ language is well suited for representing knowledge
discovered from databases. Furthermore, complex constraints in the metaqueries can be easily
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specified in the language. Through the metalevel query facility in LDL++, constraints represented
in the form of data can be used to generate rules at run-time.

From the database query perspective, in comparison to SQL, the LDL++ language extends the
ability of KM to impose more complex constraints on the data it retrieves beyond what is possible
in SQL. This is illustrated by the recursive rules that define ancestor/2 - such constraints cannot
be specified in SQL directly. Moreover, cascading or nested queries can be easily represented in
LDL++ in the form of rules.

Systemwise, the open architecture of the LDL++ system meets many of the KM demands.
It is "open” to procedural languages such as C/C++ in two ways: It provides an Application -

* Programming Interface (API) that allows applications to drive the system and, an External Func-
tion Interface (EFI) that allows C/C++ routines to be imported into the inference engine. It is
also "open” to external databases such as Sybase, Oracle, Ingres and DB2 through its External
Database Interface (EDI).

Referring to Figure 2, we can observe that the LDL++ system has to interface with the Instan-
tiator, the Database and the Bayesian Data Cluster. It interfaces with the Instantiator throught
its API, the Bayesian Data Cluster with its EFI and the Database with its EDI.

Both, tables in the external databases and C/C++ interface routines, are modeled as predicates
through its EDI and EFI respectively. As a result, these external resources are transparent to the
inference engine and the KM can plug in a different database or another learning algorithm with
ease, without making any changes to the overall implementation. The EDI facilitates the retrieval
of data as well as the archiving of statistical metadata into persistant storage.

The EDI and EFTI are also convenient for gathering data from multiple, heterogenous databases
or files. This empowers KM to discover relationships between data from different sources. A-
gain, the data access is transparent to KM and no changes are required to take advantage of this
capability. :

Last but not least, once the statistical data is derived and high-probability rules are created,
they are represented directly in LDL++ for enforcing the integrity of the database.

4 Bayesian Data Clustering

To classify the retrieved data, we use a conceptual clustering approach based on the Cobweb algo-
rithm [3] but adapted to use discriminant functions derived from Bayesian probability theory [4, 8].
We feel that the latter lends a stronger mathematical basis to the evaluation process.

The Cobweb algorithm facilitates incremental, unsupervised learning of concept hierarchies from
attribute-based instances. The concepts formed represent nodes in a concept tree, with each non-
leaf node further partitioned into its more specific children nodes. Thus, more general concepts
are located near the root of the tree and more specific concepts are located towards the leaves.
Each node in the concept tree describes a class of instances and hence each cut of the concept tree
represents a partition of all the known instances.

Given a new instance, the task of the Cobweb algorithm is to create a new concept hierarchy
that incorporates the knowledge embodied in the instance. The classification of the new instance
proceeds recursively through each level of the concept hierarchy, following a path composed of
increasingly specific concept nodes. At each level in the concept hierarchy, the classification process
is focussed on the immediate subtree (i.e. the children) of the current node and essentially reduces
to the best choice among the following four alternatives, namely:

o Incorporate the instance into an existing concept. Select the child concept which best fits the
new instance to host it.
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o Create a new child concept to host the new instance.
e Merge two children concepts and use the resulting combined concept to host the new instance.

o Split a child concept i.e. replace it with its children and then choose the best child to host
the instance. -

The best choice is determined in our case via the application of the Bayesian Evaluation Function,
which is described a little later in this section. The algorithm recursively applies the above classi-
fication process at each level of the concept hierarchy, incorporating the instance into concepts of
increasing specificity. The algorithm halts when it classifies the instance into either:

¢ A singleton node at the leaf, or

¢ A new concept at any level in the hierarchy.

In the Knowledge Miner framework, the Bayesian Data Cluster interfaces with the LDL++
module through the latter’s EFI1. It receives the data extracted by LDL++ as input, classifies it
and returns the concept tree as output. The module interface provides all the requisite functionality
to the external process/user for fine-tuning the classification process.

4.1 The Bayesian Evaluation Function

An instance is described by its attributes. Thus, if /& is the number of attributes, an instance D
can be defined as a vector of K values for these attributes:

D = (21 = 01,00y Tk = Viyoery TK = VK)

A concept is a collection of related or similar instances. The size of a concept C, denoted as |C], is
the number of its instances. The concept C can be defined as a vector of K probability distribution
functions on the K attributes of its instances:

C= (fl’ sevy fk, ooy fK)-

where f; is determined by the kth values of all its instances. For instance, if vy, vi2,..., kN are
the kth values of N instances Dy, Ds,..., Dy, respectively, then, assuming a normal distribution,
the probability distribution function fi can be estimated as:

-
-

—_ 2
fi(ak|Dy -+ DNI) = My exp {‘(—‘xkzag . } (1)

where I is the background information

1
My = ——
k 0’),\/27r’

is a normalization constant to satisfy the constraint:

+00
/ Se(zx|Dy+ -« DNI)dzi = 1,

-00

ai, the mean of fi, can be estimated as:

1 N
=D % (2)

Jj=1
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and of, the variance of fi, can be estimated as:
1 N
of = 5 2 (v —a)’. (3)
=1 )

The values of ai and of can also be estimated incrementally for the nth instance based on the
values of the same for the n ~ 1th instance - see [12] for more details. The incremental values are
estimated as:

v, - a - '
v = aaggy + 2 SH) )

and
- - 2
’gN = NN L [az(N—l) + (ak(N—l) - akN)2] + ‘('%N—#VL (5)
Let H = (Cy,...,Cy) represent the children of concept C. Let child C; (1 < j < J) be the one
selected to host new instance D, and let H; represent the new set of children nodes obtained after
the definition of C; changes to incorporate D. Then how good the assignment of D to Cj is can
be estimated by the probability:

P(D|H;H)

Clearly, the best child concept to host D is C; such that
P(Hi|DH) = max {P(H;\DH)} (7)

Assume that P(H;|H) are equal for all j, then to compare P(H;|DH) we need only compute
P(D|H;H). Notice that

. J J
] P(D|H;H) = P(DC;|H;H) = ) _ P(C;|H;H)P(D|C;H;H) (8)
J=1 j=1
and c
Pl =1 ©)
and
P(D|C;H;H) = P(D|C;) (10)
P(D|C) represents the degree to which instance D belongs to concept C' and is computed as:
K
P(DIC) = [] P(ulfe) (11)
k=1

The term P(vi|fi) can be computed easily. If the kth attribute is numeric, then

P(vlfi) = fi(n)Azs (12)

where Az is a small constant range around vi. If the kth attribute is discrete, then

num. of insts whose kth value is v
num. of insts in C

P(vklfi) = (13)
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5 Discoveries from A Large Knowledge Base

In this and the following two sections, we present the results of three applications of Knowledge
Miner to a large common-sense knowledge base called Cyc, a telecommunication database contain-
ing a large number of real telephone circuits and a chemical research database representing over 30
years of chemical research results respectively. '

Cyc is a large common-sense knowledge base developed at MCC, containing over one million
logical assertions (think of them as relations if you like). We applied an earlier version of the
Knowledge Miner system (10, 11] to two large collections of objects in Cyc: Person and Organiza-
tion. At the time, the Person collection contained 633 objects and 77 relevant relations, while the
Organization collection contained 1550 objects and 150 relevant relations.

The metaquery we used in these experiments is as follows:

MQ[P(z y) AQ(y 2) = R(z z), valueCluster())

where P,(Q, and R are variables for relations, and z,y, and z are variables for objects. Note that
valueCluster is empty, as we are only interested in the relation P(z y) A @Q(y 2) = R(z z) and not
the value clusters of z or z.

This metaquery is instantiated on combinations of the 77 relations in the Person collection and
the 150 relations in the Organization collection respectively. From the data in Cyc, 146 regularities
were discovered (i.e. were found to have enough supporting data) from the Person collection, and
250 from the Organization collection. Example regularities discovered from the Person collection
are as follows:

acquaintedWith(x y)AlanguageSpoken(y z)=>languageSpoken(x z)

studentAtInstitution(x y)AhasProfessor(y z)=+likedBy(x z)

primeMinisterOfCountry(x y) A eq(y z) = headOfGovernmentOf(x z)
computersFamiliarWith(x y) AlanguagesThisFamilyOfMachinesCanRun(y z)=>programsIn(x z)
presidentOfCountry{x y)AofficialLanguage(y z)=>languageSpoken(x z)

likedBy(x y)AwearsClothing(y 2)=>wearsClothing(x z)

birthDate(y z)AallSuperAbstrac(x y)=>birthDate(x z)

laferSubAbstractions(x y) A eq(y z) = startsBeforeStartingOf(x z)

children(x y) A eq(y z) = relative(x z)

duringActorIn(x y) A eq(y z) = canPerform(x z)

. isAwareQOf(x y) A allSubAbstrac(y z) => isAwareOf(x z)

" residences(x y)AofficialLanguage(y EnglishLanguage)=>speaks(x EnglishLanguage)
memberOfPoliticalParty(x y)AallInstances(y CommunistParty)=>ideology(x Communist)
 staffMembers(x y)Aeq(y MCC)=>probableExpertiseInComputers(x UserLevel)

All of these assertions were new to Cyc. Most of these assertions are interesting because
they specify things that are true with high, but less than one, probabilities. For example, the
regularity studentAtInstitution(x y)AhasProfessor(y z)=rlikedBy(x z) says that if z is a student in
an institution, then x must be liked by all the professors in that institution. This is not always
true but is a good default rule. Given the fact that more and more knowledge bases are capable of
reasoning nonmonotonically, this kind of default knowledge is important if you don’t know whether
a particular student z is liked by a particular professor z.

6 Discoveries from A Telecommunication Database

We also applied KM to a large telecommunication database. This database contains approximately
300MB of information about existing telephone circuits in a regional Bell company. There are two
types of circuits in the database: point to point circuits, and multiple-leg circuits. Each circuit (or
leg) is a sequence of connected components such as channel, cable, station, equipment, test point,
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etc.. Each component is associated with a set of features. For example, an equipment has location,
function, channellD, and others. A channel has starting and ending locations, conductivity, and

others.
We were interested in finding the feature correlation between components that are directly

connected in some circuit. So the metaquery used was as follows:

MQ[linked(X Y) = equal(featurel(X), feature2(Y)), valueCluster()]

where X and Y are variables for components. From this metaquery, the instantiator generated

a series of LDL queries, with linked bound to a circuit connection table, and feature! and fea-
ture2 bound to various columns in each component table. Running these LDL queries against the
database, the KM system generated 281 patterns in about 7 hours. Two examples of patterns that
have high probabilities are: '

(P=1.0) linked(EQPT,EQPT)=>equal(chanID(EQPT),chanID(EQPT))
(P=0.98) linked(CHANNEL,EQPT)=>equal(endLocation(CHANNEL) location(EQPT))

Two examples of patterns that have low probabilities are:

(P=0.015) linked(LOOP,CABLE)=>equal(startLocation(LOOP),endLocation(CABLE))
{(P=0.004) linked(EQPT,CHANNEL)= equal(calcSigVoice(EQPT),ovrdSigVoice{( CHANNEL))

Two examples of patterns that have middle probabilities are:

(P=0.59) linked(TPoint,TPoint)=>equal(accsys(TPoint),accsys(TPoint))
(P=0.40) linked(EQPT,TPoint)=>equal(hierchyIND(EQPT),analRingSigDir(TPoint))

We presented these rules to experts in this field and most of the rules were demmed to make
perfect sense. There are a number of ways that these rules can be used: Those with high probabili-
ties can run directly (they are in fact LDL queries) against the database to find the set of data that
violate the rules. Such data is very likely to be erroneous. Similarly, one can run the low probability
rules to find the data that obeys the rules - this data is also very likely to be erroneous. These
rules can also be used as data validation filters for future data entry. Any input data that violates
the high-probability rules (or obeys the low-probability rules) should be flagged and checked before
actually being entered into the database. The rules with middle probabilities are also interesting
and useful in that they identify subsets of the database that need further investigation. One can
then introduce new metaqueries that are constrained to focus on these subsets and subsequently
generate new rules with high and low probabilities.

7 Discoveries from A Chemical Research Database

We are currently applying the KM system to a real chemical research database. This database
contains results representing over 30 years of chemical research and experiments. Conceptually
speaking, it has information about the ingredients and the properties of various compounds. The
ingredients are specified in a single table, while the properties are distributed over more than 50
tables. All these tables are linked via the compound identification.

We are interested in discovering the relationship between ingredients and properties, so the

following metaquery is employed:
MQ[ingredient(C X Y') = properties(C Z), valueCluster(Z))

where C is a variable for compound identification, X and Y are variables for ingredients, and Z is
a varible for property. As one may expect given the large number of properties in the database,

f P S Y
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this metaquery is too time consuming to run. So we restrict it by constraining the variables X and
Y to be bound only to those ingredients that are commonly used.
Using the restricted metaquery, KM returns a set of patterns describing the relationships be-
tween specific ingredients and properties. One example of these patterns is the relationship between
an ingredient 3060 and the density property of the compound:

(P=0.99) ingredient(C,3060,Y') = Distribution(density,BM)=(1.243,0.46)
(P=0.01) ingredient(C,3060,Y') = Distribution(density,BM)=(-999.9,0.2)

The first rule indicates that the majority of values of (density,BM) are near 1.243 (with a variance
0.46). Thus, the ingredient 3060 has a very specific effect on the compound’s density BM property,
irrespective of the other ingredient Y. This information is extremely valuable to the chemists. The
second rule indicates that there is some noisy data in the density table.

We are currently experimenting with various metaqueries, and the results will be reported in
future papers.

8 Generating Initial Metaqueries

- As we have seen so far, metaqueries play an important role in the KM discovery system. However,
good metaqueries do not come easy. They must balance the computational expense on one hand

. with the potential profit of discovery on the other. One may have an extremely general metaquery
for a database, but it’s demands on computational resources may be unteneble. On the other
hand, one may have an extremely specific metaquery with fast response characteristics, but it may
not discover anything interesting. The ideal case would be to have a metaquery general enough
to support the discovery of interesting patterns, but constrained enough to do so without making
unreasonable demands on computational and time resources.

Obviously, designing the right metaquery is a difficult problem - in addition to knowledge about
the database schema, one also needs good judgement and a healthy dose of intuition. We do not
claim te have reduced this process to an exact science - indeed, we have not solved this problem.
Instead, our philosophy, as reflected in the KM methodology, is to play the role of an informed
assistant and afford a human expert the fullest flexibility and help in defining the best metaqueries
he or she can. For example, one thing we find useful is to have the system automatically generate
a set of initial metaqueries, which can then be analyzed and refined by the human expert. As more
rules are discovered from the database, the system should be able to generate more metaqueries in
an interactive fashion. This is the task of the Metaquery Generator in KM.

The Metaquery Generator accepts two inputs: the database schema and the rules discovered
from the database. Initially, the generator examines the database schema and generates simple

* metaqueries that address the relationships across tables. Certain types of information from the
schema can provide useful guidance in narrowing down the set of possible metaqueries. These
include:

1. Keys

2. Column Types

3. Column Names

Some example heuristics based on these informaton types include:

e Since the key column of a table is always unique, we can pretty much eliminate it from
consideration as a possible candidate for instantiation in metaquery.
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¢ When joining any two tables, we need to determine the join columns i.e. a column from each
table which could be deemed equal. In this case, the basic criterion is that both columns
must have the same types to even have a reasonable chance at success.

o If the column names are the same, the likelihood is greater that the two tables should be
joined based on those two columns.

Discovered rules can also be used to guide the generation of metaqueries. For example, knowing
the probabilistic distribution of the candidate columns for joining two tables, we can determine

whether a metaquery based on the same will generate useful results or not. Thus, less useful

metaqueries will not be suggested to the users. Another way to generate metaqueries is to generalize
the existing rules. For example, the system BLIP [13] uses the heuristic of “turning constants to
variables” to acquire metalevel rules from domain-level rules entered by users.

. The Metaquery Generator is by no means complete. We have yet to generate complex queries
automatically. There is also potentially a lot more useful information that can be gleaned from the
database schema and the discovered rules that could be gainfully applied to the generation process.
This is ongoing work and we are engaged in a little' discovery activity ourselves - we will have more
to report as more experiements are carried out.

9 Conclusions and Future Work

We have presented a framework for using metaqueries to integrate induction and deduction for
knowledge discovery from databases. The framework has been implemented in the Knowledge
Miner system to integrate two very advanced deductive and inductive technologies: the LDL++
system and the Bayesian Data Cluster. Applications of Knowledge Miner to several real-world
databases and a knowledge base have demonstrated that the metaquery approach is indeed viable
and shows much promise.

Our experiments with the system thus far have been fruitful, but a lot more work needs to be
done bé&fore the KM system can be truly useful in a variety of discovery environments. On the
theoretical side, we are exploring more advanced learning algorithms with a better, more intelligent
clustering capability as well as a higher efficiency in terms of computational time and space used.

. On the practical side too, there are a number of issues on the agenda. One is to have the ability
to connect with legacy databases provided by various vendors. The LDL++ system can currently
access data from Sybase, Ingres, Rdb and Oracle. We plan to extend it to also access other database
products such as IBM/DB2 and IBM/IMS. A second issue is the design and implementation of an
appropriate visualization tool for the graphical presentation of the results of the discovery process.

Lastly, we will also explore new uses for the discovered rules and statistical data. In addition to
using them to enforce integrity constraints for future updates and for generating new metaqueries,
we believe that they can also be effectively used for estimating the cost of queries and also for
supporting some forms of fuzzy querying. These beliefs remain to be verified.
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