
Comparing Agent Modeling for Language and Action

Nancy Green and Jill Fain Lehman
Computer Science Department

Carnegie Mellon University
Pittsburgh, PA 15213-3891, USA

(Internet: nancy.green@cs.emu.edu, jill.lehman@cs.cmu.edu)

Abstract

We present our approach to agent modeling for
communication, and compare it to an approach
to agent modeling for other types of action. The
comparison should be instructive since both ap-
proaches are implemented in the same problem-
solving architecture, face similar application do-
main requirements, and address the same general
problem of comprehension. Also, we show how
for discourse processing, it is possible to have the
benefits of viewing agents in terms of their be-
fiefs and intentions without sacrificing real-time
performance and reactivity.

Introduction
Although solutions have grown up in very different re-
search communities, the problem of agent modeling for
communication bears striking similarity to the prob-
lem of agent modeling for planning and action. Thus,
it would not be at all surprising if there were lessons to
be shared between the two communities. In this paper,
we present our approach to agent modeling for com-
munication, and compare it to an approach to agent
modeling for other types of action. Both approaches
have been applied in the same domain and both have
been implemented within the same integrated problem-
solving and learning architecture, Soar.1 First we de-
scribe agent modeling in NL-Soar, a computational
model of real-time dialogue generation and comprehen-
sion which we have developed. NL-Soar’s agent model
represents the agents with which it communicates at
the level of discourse actions. Next we briefly describe
agent modeling in an automated pilot agent (AP) de-

veloped by another research group using Soar but ad-
dressing a different problem in the same domain: plan-
ning the real-time domain actions (non-communicative
actions such as controlling an airplane) of an agent in
a complex, dynamic, multi-agent domain (Tambe
l~osenbloom 1994). The AP’s agent model represents

1 For more information on Soar in general, see (Newell
1990; Lehman, Laird, & Rosenbloom 1996). For more in-
formation on the domain in which the two approaches have
been applied see (Laird et al. 1995; Tambe et al. 1995).

the agents with which it interacts at the level of domain
actions. In the rest of the introduction, we describe the
problems shared by NL-Soar and AP in more detail.

Shared Problems

Both the problem of agent modeling for communica-
tion and for planning for action can be viewed primar-
ily as a comprehension problem. In other words, at a
certain level of description the goal is to take a contin-
uous stream of input and organize it into meaningful
units that enable the agent to reason to an appropriate
response. For communication the input is a stream of
words2, while for planning, it is the primitives of the
action language. Then, the comprehension problem for
language is to analyze the syntactic and semantic re-
lations obtaining in the input, as well as to recognize
the communicative intention underlying the speaker’s
use of the message in the current conversational con-
text. (The problem of recognizing the communicative
intention may require an analysis of discourse relations
in the input.) Similarly, the problem for interpreting
the domain (non-linguistic) actions of other agents 
to analyze the structural relations among the actions
in context to recover their domain intentions (e.g., an-
other agent is turning in order to fly due east in order
to evade me). Common issues faced in solving each
type of comprehension problem include recognizing lo-
cal ambiguity, recovering from failures in ambiguity
resolution, and the inference of elements implicit in
the input stream.

In the particular systems we want to compare there
are two other common factors: architecture and do-
main. As mentioned above, both systems have been
implemented in Soar, a production-system architec-
ture with a ubiquitous learning mechanism that views
behavior as the outcome of problem space search.
Moreover, both approaches have been applied to the

2Of course, the actual input for a human listener would
be a continuous acoustic signal, but for our purposes here,
it suffices to consider the stream after segmentation into
words. We make a similar abstraction in treating the in-
put for planning agents to be the primitives of the action
language.

38

From: AAAI Technical Report WS-96-02. Compilation copyright © 1996, AAAI (www.aaai.org). All rights reserved. 



same real-time domain of tactical air battle simulation.
Thus, in addition to responding to the functional con-
straints of comprehension, both approaches have had
to respond to constraints imposed by the architecture
and by the real-time nature of the task. In the next two
sections we explore how each approach tries to satisfy
its constraints.

Agent Modeling in NL-Soar
This section presents our approach to agent modeling
in NL-Soar. The first three subsections provide back-
ground on the requirements which NL-Soar is designed
to meet, the overall design of NL-Soar, and how this
design addresses these requirements. Next we describe
discourse generation in NL-Soar, in particular, the role
of an agent’s beliefs and intentions in discourse plan-
ning. Finally, we describe how knowledge compiled
during discourse planning is used to create NL-Soar’s
agent model for discourse comprehension.

Requirements

Our current research in NL-Soar is directed towards
providing agents implemented in Soar with real-time
dialogue generation and comprehension capabilities.3

Furthermore it is assumed that non-linguistic tasks in
the application domain of NL-Soar require a high de-
gree of reactivity to ongoing, external events. That
is, communication must not interfere with the Soar
agent’s ability to perform non-linguistic tasks in a
timely manner. Thus, as we describe elsewhere
(Lehman, Van Dyke, & Green 1995), the overall de-
sign of NL-Soar must satisfy three properties: linear
complexity, interruptability, and atomicity. The first
property, linear complexity, means that processing to
understand or generate a message must take time that
is roughly linear in the size of the message (necessary
to keep pace with human rates of language use). The
second property, interruptability, ensures that time-
critical task behaviors cannot be shut out by language
processing (and vice versa). The third property, atom-
icity, ensures that if language processing is interrupted,
partially constructed representations are left in a con-
sistent and resumable state.

Language Processing in NL-Soar

To understand how NL-Soar provides the desired com-
munication model, we must first briefly review the
components out of which Soar systems are organized.
Figure 1 is a graphical representation of the portion of
NL-Soar used for generating discourse-level behavior.

3Previous versions of NL-Soar addressed on-line parsing
(Lewis 1993) and sentence generation (Rubinoff & Lehman
1994). In the version of NL-Soar described here, inputs
and outputs consist of written words. Interfacing NL-Soar
to a speech recognizer is an area of current research. Other
areas of current research include using NL-Soar in modeling
second language acquisition and simultaneous translation.

LEARN-DISCOURSE

D-PIAN.CONSrRUCrOR

ACttlEgE-D-GOAL

TOP

CREATE-OPERATOR

D.PLAN

Figure 1: A goal stack for reasoning about language
generation at the discourse level

Linguistic processes, like all processes in Soar, are cast
as sequences of operators (names inside the boxes) that
transform states (boxes) until a goal state is achieved.
States and operators are further organized into prob-
lem spaces (boldface names). (Operators are defined
by sets of productions stored in memory.) Compre-
hension problem spaces in NL-Soar contain operators
that use input from the perceptual system to build syn-
tactic, semantic and discourse structures on the state;
generation problem spaces contain operators that use
semantic and discourse structures to produce syntac-
tic structures and motor output. Note that the prob-
lem space labelled Top is the only space connected to
the perceptual and motor systems and the only space
provided by the Soar architecture; all other problem
spaces are provided by the system designer.

Behavior of the agent corresponds, in general, to the
application of an operator to change the state. If the
state changes caused by the operator, or by new inputs
from the agent’s sensors, satisfy the operator’s termi-
nation conditions, then the operator is terminated and
a new operator is applied. If the termination con-
ditions remain unsatisfied, then a subgoal is created
(thin arrows) and a new problem space is in~talled 
make progress on solving the subgoal; in this way a
goal/subgoal hierarchy may be generated. Processing
in a subgoal often produces results to be returned to
a state higher in the’ goal stack. When Soar’s learning
mechanism is being used, the return of results auto-
matically creates chunks. Chunks are new productions
added to production memory that capture the work
done in the subspace, making it available in the su-
perspace without subgoaling during future processing.

39



This means that when a system structured as in Figure
1 is fully chunked all of its behavior will be produced by
operators in the Top space. We call these top operators
and the behavior produced by them we call top-level
behavior.

The top-level behavior of NL-Soar arises through
learning. Figure 1 depicts the process by which one
particular type of top language operator is learned,
specifically, the d-plan-constructor. When a situation
occurs in which there is a communicative goal for which
no d-plan-constructor has previously been learned, a
subgoal arises to build a d-plan-constructor. Vari-
ous types of discourse knowledge (e.g., knowledge of
how to achieve illocutionary goals, knowledge of turn-
taking and grounding conventions) are brought to bear
during the search for a sequence of appropriate dis-
course moves. When the moves have been constructed
in the lower spaces, a d-plan-constructor is returned
as a set of chunks. The application of this operator
in the Top space will produce the planned set of dis-
course moves (to be realized by tactical language gen-
eration operators) and update the model of the dis-
course. Thus, during learning, NL-Soar uses Soar’s
goal stack to search for a new top operator that will
compile together the results of a potentially lengthy
search. Post-learning, that operator will, under simi-
lar conditions, be directly available for application in
the Top space, and its changes to the state will be made
without subgoaling, Note that while there are no theo-
retical limits on how much knowledge can be integrated
through processing in the lower spaces, once a top op-
erator has been constructed, the amount of processing
it does is fixed.

The process we have just described for the creation
of d-plan-constructors permeates all the linguistic lev-
els and capabilities of NL-Soar. In other words, NL-
Soar uses a similar dynamic to create top-level u-
constructors (which build syntactic structure during
comprehension), top-level s-constructors (which build
semantic structure during comprehension), top-level d-
realizers (which build structures during tactical gener-
ation), etc. When the linguistic operators required to
comprehend or generate a sentence have been learned,
language processing in NL-Soar looks like a succession
of top operators of the different sorts modifying lin-
guistic structures on the Top state on a more or less
word-by-word basis. When a top operator has not been
constructed via previous problem solving, the system
automatically falls back on the knowledge in its lower
spaces to produce behavior in a more deliberate fash-
ion. Since the result of this deliberation is always the
creation of a new top operator, however, the perfor-
mance of the system as it processes more and more
language becomes increasingly dominated by the more
efficient form of that knowledge found in the Top space.

Linearity, Interruptability, and Atomicity
In real-time domains we are particularly concerned
with the t0P-level behavior of the system, i.e. we in-
tend to model dialogue among "domain experts" who
have considerable prior experience within a domain.
Top space language operators compiling syntactic and
semantic knowledge are acquired by training NL-Soar
to interpret or generate sentences exemplifying repre-
sentative syntactic and semantic constructions. Note
that it is not necessary for NL-Soar to be trained on
exactly the same set of sentences that it will encounter
post-training. Language operators compiling discourse
knowledge are acquired by training NL-Soar to pro-
duce utterances while participating in training dia-
logues which exemplify representative discourse goals.
Then, in an actual (as opposed to a training) dialogue,
an agent’s dialogue processing consists of a sequence
of applications of top language operators possibly in-
terleaved with non-linguistic operators.

How does a model trained in this way meet the re-
quirements of linear complexity, interruptability, and
atomicity? Once behavior is fully chunked, the arrival
of a message results in the application of only a small
number of top operators per word, the linear complex-
ity we were after. Equally important, the language
process itself is now represented in the Top space in
terms of finely-grained operators that create the op-
portunity for interleavability. Since the application of
an operator is defined by the Soar architecture as the
non-interruptable unit of work, this means that the
language process as a whole becomes interruptable at
the level of work done by each top operator. This fea-
ture of the architecture gives us a certain degree of
atomicity as well. Since the application of an opera-
tor is guaranteed to complete, all of its changes to the
state will be executed before language is interrupted,
leaving language processing in a resumable state.4

Discourse Generation in NL-Soar
The explicit representation of an agent’s beliefs and in-
tentions has been a dominant theme in computational
approaches to both discourse generation and discourse
interpretation.~ In this field, plans are generally taken
to be an agent’s beliefs regarding his program of ac-
tion towards accomplishing a particular goal (Pollack
1990). Furthermore, it is argued that providing an ap-
propriate conversational response to a speaker’s com-
municative act depends upon recognizing its role in
the plans which the speaker intends for the hearer to
recognize (Sidner 1985; Grosz & Sidner 1990).

Many plan-based approaches to discourse generation
and comprehension have relied upon some amount of

4The ability to resume is limited by the fact that some
Top state language structures are ephemeral, however. For
example, the input buffer has a decay rate normally set to
2 seconds/word.

5For a survey of this field, see for example (Carberry
1990; Cohen, Morgan, & Pollack 1990).



compiled, declarative planning knowledge (sometimes
referred to as discourse recipes (Pollack 1990)) pro-
vided by the system builder. An important distinction
(Carberry 1990) is made between domain goals, goals
to bring about changes in the world, versus discourse
goals, goals to bring about changes in the beliefs or
intentions of the hearer. In particular, typically, dis-
course plans are intended to update the conversational
record or common ground, that is, a record of the
changing mutual beliefs of the participants throughout
the progress of a conversation (Thomason 1990). Nec-
essarily, participants cannot really share beliefs, but
much conversational effort is aimed at attempting to
keep each participant’s version of the record consistent
with the other participants’ apparent versions. Also,
note that the distinction is sometimes made between
an agent’s apparent acceptance of a belief for the con-
versational record, as opposed to his actual adoption
of the belief.

Residing in’ memory, NL-Soar’s conversational
record maintains information such as the current set
of discourse expectations (e.g., the asking of a ques-
tion creates the shared expectation that the addressee
of the question will attempt to provide an answer), the
current discourse segment purpose (i.e. the accepted
goal of the current discourse segment (Grosz & Sidner
1986), which may span several turns), and the status
of proposals that have been made in the preceding dis-
course (e.g., that a proposal has been understood and
whether it has been accepted or challenged). In ad-
dition, NL-Soar represents in memory an agent’s own
beliefs which are relevant currently to the conversation
(e.g., the information the agent may provide as an an-
swer to a just-asked question). Finally, NL-Soar may
represent in memory an agent’s discourse goal (such as
the goal that it become mutually believed that the par-
ticipants have identified the same entity), which leads
to the initiation of a discourse segment by the agent.

As described in the section on Language Processing
in NL-Soar, the result of discourse planning in NL-
Soar is a d-plan-constructor, a learned top operator.
Note that a d-plan-constructor specifies conditions un-
der which it is appropriate for it to be selected, in
terms of the current state of the agent’s conversational
record, his other beliefs, and/or his discourse goals.
Executing a d-plan-constructor fills a buffer with one
or more discourse moves6 to be realized by tactical
generation operators and updates the conversationM
record to reflect the expected state of the conversation
after the moves have been realized. In NL-Soar, an
agent can be said to be commited to a discourse plan
just in case the operator currently selected to run in
the Top state is a d-plan-constructor. Note that in this
view, the agent may hold a succession of plans aimed
at satisfying the same discourse segment purpose.

D-plan-constructors are similar to the compiled

6In the current implementation, discourse planning is
performed for one full turn.

planning knowledge (discourse recipes) used in tradi-
tional discourse generation systems, but with several
significant differences:

* They are acquired by NL-Soar, during training, as a
result of problem-solving to find coherent sequences
of discourse moves to achieve discourse goals, rather
than provided by the system builder.

* In some cases, the knowledge may be more specific
than that typically provided in hand-coded discourse
recipe libraries. In other words, although d-plan-
constructors may be parameterized, they may also
contain attribute-values which reflect the circum-
stances in which they were learned.

. Although the problem-solving process resulting in
the acquisition of a d-plan-constructor may have in-
volved decomposition into subgoals, the subgoal hi-
erarchy is not retained in the d-plan-constructor.
(Although information about hierarchical and en-
ablement relations between actions is not saved in
the current implementation, in principle, it could be
encoded in the chunks for later use.)

¯ Whereas traditional discourse recipes are declarative
specifications which must be interpreted at run-time,
d-plan-constructors (like other operators in Soar)
represent procedural knowledge.

¯ Most traditional approaches to discourse processing
(one exception is (Green & Carberry 1994)) have 
used the same discourse recipes for both generation
and interpretation. In the next section, we describe
how in NL-Soar d-plan-constructors are used in dis-
course interpretation.

The Agent Model in Discourse
Comprehension
This section illustrates how the mechanisms of NL-Soar
have influenced the form and function of NL-Soar’s
agent model for discourse comprehension. (For more
details on our approach to discourse processing, see
(Green &; Lehman 1996).) Before describing the agent
model, we describe the purpose of the agent model.
The task of discourse comprehension in NL-Soar is
to update the hearer’s version of the conversational
record in real-time, 7 based upon the current state of
the conversational record and the heater’s semantic in-
terpretation of the speaker’s utterances. For example,
given the semantic interpretation of an utterance as
a name referring to the agent hearing the utterance,
and given an appropriate discourse context, discourse
comprehension recognizes that the name is being used
as a summons,s and that the intended effect is to up-
date the conversational record with the mutual belief

7Our goal is to model discourse comprehension incre-
mentally on a word by word basis. In our current imple-
mentation, discourse comprehension is not attempted until
an utterance has been semantically interpreted as a whole.

8As opposed to a response to a wh-question, or an ellip-
tical self-introduction.

41



of speaker and hearer that the speaking agent has be-
gun a new turn and that the hearing agent will be the
addressee of the turn.

Thus, one way of looking at discourse comprehension
is as a problem of knowing how to update one’s version
of the conversational record appropriately. Also, as
mentioned earlier, communication requires the recog-
nition of the speaker’s plans which the speaker in-
tended for the hearer to recognize. Both problems
could be solved if the hearer could recognize what d-
plan-constructor had generated the speaker’s discourse
move. (The d-plan-constructor would specify any in-
tended updates of the conversational record, enabling
the hearer to update his own version accordingly.) We
assume that within a given domain of expertise, agents
do possess comparable sets of d-plan-constructors and
further, intend for the application of those d-plan-
constructors to be recognized.

In order to recognize the speaker’s d-plan-
constructor, first, it is necessary to create an agent
model of the speaker, which we refer to as the heater’s
model of the speaker (HMOS). The HMOS is con-
structed each time the top discourse comprehension
operator is applied. Note that construction of the
HMOS is simplified by the existence of the conversa-
tional record. That is, since the conversational record
is presumed to normMly consist of shared information,
the HMOS version of the conversational record (that
is, the heater’s model of the speaker’s version of the
conversational record) can be created by copying the
heater’s version of the conversational record. Heuris-
tics are used to supply non-shared information.

Then, in the context of HMOS, a d-plan-constructor
is selected and applied by Soar, resulting in updates
to HMOS. This d-plan-constructor models the opera-
tor which resulted in the speaker’s production of the
current discourse move. The hearer compares the pre-
dicted discourse moves to what he has heard (semanti-
cally interpreted) so far. If the current discourse move
has been predicted by the d-plan-constructor, then
the interpreting agent may update his version of the
conversational record from the HMOS conversational
record. Note that a d-plan-constructor may generate
multiple discourse moves. Since discourse comprehen-
sion begins as soon as semantic operators have pro-
vided an interpretation for the current utterance, the
HMOS may contain discourse moves which the speaker
plans to make but which have not yet been heard.
These moves guide the bearer’s interpretation of sub-
sequent utterances. Note that as soon as the discourse
comprehension operator terminates, the agent model
(HMOS) is deleted.

We have not yet addressed strategies for handling
ambiguity and error recovery in discourse comprehen-
sion, although we envision using a general strategy con-
sistent with that currently used by NL-Soar at the sen-
tential level. The system keeps only a single syntactic
and semantic interpretation for each utterance. Ambi-

guity arises when more than one top-level syntactic or
semantic operator can be applied in the current con-
text. Ambiguity resolution is accomplished using other
knowledge sources to choose among the available oper-
ators. So, for example, two different syntactically ap-
propriate attachments for a prepositional phrase might
be decided by semantic knowledge that prefers one of
them in the current context. If an incorrect attachment
is revealed in the disambiguating region of the utter-
ance, error recovery is required. Because only one path
has been kept, standard backtracking is not possible.
Instead, the same detection of local structural patterns
that signals an error also leads to learning new top-level
constructors that replace the previous structure with
the appropriate structure. Since detection of errors is
based on specific local structural patterns, not all er-
rors can be undone; this leads, naturally, to a theory
of unrecoverable errors which conforms to data on hu-
man on-line sentence comprehension (Lewis 1993). 
is an interesting open question whether there are com-
parable limitations on human recognition of discourse
intention.

Agent Modeling in AP
In this section, we briefly describe a different approach
to agent modeling developed for the automated pilot
agent described in the introduction. We compare it to
NL-Soar’s approach in hopes of gaining deeper insight
into agent modeling for discourse.

Requirements

The automated pilot agent (AP) developed by Tambe
and Rosenbloom (Tambe & Rosenbloom 1994) needs 
monitor the occurrence of and temporal relationships
between events in the world, a process which they refer
to as event tracking. The events may be high-level or
low-level actions, observed or simply inferred, and in-
stigated by other agents or not. They define tracking as
the process of recording the events and their temporal
relationships, and monitoring their progress. Accord-
ing to Tambe and Rosenbloom, the problem of event
tracking is closely related to the problem of plan recog-
nition. They claim that within the domain of tracking
opponents in simulated air combat, there are several
novel issues faced in event tracking however. First,
AP must track highly flexible and reactive behaviors
of the other agents. That is, in this environment, it
is not reasonable for an agent to plan far ahead and
then commit to the plan. Second, the agents’ actions
continuously influence the actions of the other partic-
ipants, thus interpretation of an agent’s actions may
require an understanding of these interactions. Third,
event tracking must be performed in real-time and not
interfere with the agent’s ability to perform other ac-
tions in real-time. Last, event tracking must be able
to continue efficiently in the presence of ambiguity.

The above issues are similar to some issues faced in
discourse comprehension and generation by NL-Soar.



We claim that the first and second issues they raise are
faced by dialogue participants too (although the need
for flexibility and reactivity in their system is probably
on a smaller timescale than in dialogue). In dialogue,
speakers cannot commit themselves many moves in ad-
vance to a rigid discourse plan. A dialogue participant
must monitor the reaction of the other participants to
what he has just said, address misconceptions, follow
changes in topic and interruptions, respond to unantic-
ipated requests, etc. Also, as described earlier, one of
NL-Soar’s design goals is to model real-time language
behavior. Lastly, the ability to continue discourse com-
prehension in the presence of ambiguity is an aspect of
the general comprehension problem.

Design of AP

The automated pilot uses a problem space/operator
goal stack to generate its real-time behavior. For ex-
ample, AP may be attempting to execute its mission
by applying the EXECUTE-MISSION operator in the
top-level problem space. In the current situation, AP
may not be able to satisfy this top-level goal, and so a
subgoal is generated. In the subgoal problem space, an
INTERCEPT operator is selected, which in turn may
lead to a subgoal in which an EMPLOY-MISSILE op-
erator is selected, and so on. In short, selection of
an action at any level of abstraction is driven by the
current situation. Tambe and Rosenbloom claim that
this design supports the flexible and reactive behavior
needed for this type of agent, since whenever current
conditions change such that an operator’s termination
conditions are satisfied, the operator will be terminated
and its subgoals, if any, will be deleted.

To briefly compare this approach to the approach
taken in NL-Soar, note that the design of AP does
not make use of Soar’s learning mechanism. AP uses
only the operators given to it by its system builders.
In contrast, NL-Soar uses both operators which are
learned (acquired by chunking) and which are given
to it by its builders. Thus, during training, NL-Soar
would make use of a problem space/operator goal stack
to generate its behavior while compiling that problem
solving into a set of language operators (discourse, syn-
tactic, and semantic). However, in real-time, NL-Soar
need not make use of this power. Instead, the learned
language operators are applied in NL-Soar’s top-level
problem space, avoiding the need for potentially costly
problem-solving in lower problem spaces.

Event Tracking in AP

The automated pilot agent’s model of its opponent con-
sists of an independent problem space/operator goal
stack running concurrently with AP’s own goal stack
and which AP is able to monitor. This approach is
based on the following assumptions:

¯ the opposing agent has a similar mechanism for gen-
erating its own behavior,

¯ the opposing agent has available the same set of op-
erators as AP’s, and

¯ AP is able to create an accurate model of the current
situation as perceived by the opposing agent, which
is referred to as stateovponent.

Thus, as stateoppo~nt changes, the opponent’s simu-
lated goal stack will change as described in the preced-
ing section. In other words, given stateopponent, the op-
ponent’s goal stack, and the opponent’s operators, AP
can simulate the behavior of its opponent. Thus, AP
can infer unobserved actions of the opponent, as well as
hierarchical relationships between actions. Note that
AP must corroborate its opponent’s ongoing observed
behavior with the predicted behavior.

In order for AP’s simulation of its opponent to be
correct, it is necessary for stateopponent to be accurate
enough to cause the goal stack to be an accurate rep-
resentation of the opponent’s actual goal stack. Note
that this is similar to the problem faced in NL-Soar of
generating the heater’s model of the speaker (HMOS).
In AP, stateopponent is constructed using three strate-
gies:

¯ For certain features of the current situation, no dis-
tinction is made between the knowledge of AP and
of his opponent. This knowledge is stored in a phys-
ically shared space referred to as a world-centered
problem space.

¯ Not all details of stateoppone~t are modeled.

¯ Some information, which may be incomplete or in-
accurate, is supplied by an external agent (e.g., mil-
itary intelligence reports).

AP’s approach to ambiguity in event tracking, that
is, cases in which more than one operator is applica-
ble in stateowon~t, is to use heuristics to commit to
a single interpretation and proceed. If inconsistencies
between predicted and observed actions are detected
later, then single-state backtracking is performed to
undo some of the commitments and repair the incon-
sistencies.

Commonalities and Differences
This section summarizes the differences and common-
alities in the two approaches to agent modeling. First,
agent modeling in AP makes use of the Soar architec-
ture in a different way than agent modeling in NL-Soar
does. AP’s agent model exists as a separate goal stack

’running concurrently with AP’s goal stack. Note that
this approach is consistent with AP’s use of the goal
stack to generate its own flexible and reactive behav-
ior in real-time. On the other hand, NL-Soar’s real-
time behavior is generated primarily by use of learned
top operators. NL-Soar’s agent model is a simulation
of the other agent’s top state (the Heater’s Model of
the Speaker), based upon the current conversational
record and updated by shared d-plan-constructors, i.e.
learned discourse operators.



Another difference is that NL-Soar’s discourse com-
prehension component models recognition of discourse
plans, which are intended to be recognized, whereas
the goal of event tracking in AP is to recognize ac-
tions which are not necessarily intended to be recog-
nized. The d-plan-constructors used in NL-Soar can be
viewed as constructing shared plans (Grosz ~ Sidner
1990). Thus, the problem of agent modeling in dis-
course comprehension may be addressed using a set of
assumptions which are not applicable in the latter type
of agent modeling: e.g., that the conversational record
can be used to construct the HMOS, that the agents
share a set of operators for generating the activity to
be tracked, and that linguistic clues may be provided
to assist comprehension. Note that in subsequent work
(Tambe 1996), AP has been extended to track "team"
activities, activities involving joint intentions and joint
commitments to joint activities, using team operators.
However, no distinction is made between the problem
of tracking team activities by members and by non-
members of the team, i.e., the distinction between in-
tended and non-intended recognition.

One feature which the two approaches have in com-
mon is the general approach of constructing an initial
model of the other agent and then simulating his be-
havior in order to recognize his underlying intentions.
This similarity is not coincidental. Our approach to
agent modeling has been influenced by the work on
event tracking for AP. Moreover, while a more tra-
ditional approach to discourse plan recognition could
have been implemented for NL-Soar, e.g., using plan-
inference rules to reason from surface speech acts to
the speaker’s plans, the present approach capitalizes
on the architectural features of Soar (chunking, con-
trol structure, etc.). Another point of similarity is the
approach to ambiguity in AP and in sentence compre-
hension in NL-Soar. Both commit to a single inter-
pretation and limit backtracking due to their goal of
modeling real-time behavior.

Previous research in discourse has shown that dis-
course interpretation requires recognition of domain
goals as well as discourse goals. An interesting open
issue for NL-Soar is how to integrate recognition of
the two types of goals. Should AP’s approach to event
tracking be used in recognizing domain goals for dis-
course comprehension in NL-Soar, or something else?
Note that the two approaches are not mutually exclu-
sive alternatives of the architecture. In AP’s agent
model, intentions are represented implicitly by the se-
mantics of the goal stack used to simulate actions of
the observed agent. In NL-Soar, a d-plan-constructor
is the result of "compiling away" the discourse gener-
ation goal stack, resulting in a learned top-state op-
erator that can be used to simulate the discourse ac-
tions of the observed agent. One way of integrating the
two approaches would be to simulate another agent’s
observed behavior, linguistic and non-linguistic, with
the same goal stack. Precompiled language operators,

e.g., d-plan-constructors, would run in the top-level
language state of this goal stack.

Summary

We have described our approach to agent modeling
in NL-Soar, and compared it to the approach used in
the automated pilot agent. The comparison should be
instructive since both approaches are implemented in
the same problem-solving architecture, face similar ap-
plication domain requirements, and address the same
general problem of comprehension. We showed that
for discourse processing, it is possible to have the ben-
efits of viewing agents in terms of their beliefs and in-
tentions without sacrificing real-time performance and
reactivity. Also, we showed that the differences in the
two approaches to agent modeling are due in part to
their different use of architectural mechanisms in the
architecture which they share.

Acknowledgments
This research was supported in part by the Wright
Laboratory, Aeronautical Systems Center, Air Force
Materiel Command, USAF, and the Advanced Re-
search Projects Agency under grant number F33615-
93-1-1330. The views and conclusions contained in this
document are those of the authors and should not be
interpreted as necessarily representing the official poli-
cies or endorsements, either expressed or implied, of
Wright Laboratory or the U.S. government. We wish
to thank Milind Tambe and an anonymous reviewer
for their comments on the preliminary version of this
paper.

References
Carberry, S. 1990. Plan Recognition in Natural Lan-
guage Dialogue. Cambridge, Massachusetts: MIT
Press.
Cohen, P.; Morgan, J.; and Pollack, M., eds. 1990.
Intentions in Communication. Cambridge, Mas-
sachusetts: MIT Press.
Green, N., and Carberry, S. 1994. A hybrid reasoning
model for indirect answers. In Proceedings of the 32nd
Annual Meeting of the Association for Computational
Linguistics.

Green, N. L., and Lehman, J. F. 1996. An approach
to compiling knowledge for dialogue generation and
interpretation. Submitted for publication.

Grosz, B., and Sidner, C. 1986. Attention, inten-
tion, and the structure of discourse. Computational
Linguistics 12(3):175-204.

Grosz, B., and Sidner, C. 1990. Plans for discourse.
In Cohen, P.; Morgan, J.; and Pollack, M., eds., In-
tentions in Communication. MIT Press. 417-444.

Laird, J. E.; Johnson, W. L.; Jones, R. M.; Koss,
F.; Lehman, J. F.; Nielsen, P. E.; Rosenbloom, P. S.;
Rubinoff, R.; Schwamb, K.; Tambe, M.; Dyke, J. V.;



van Lent, M.; and III, R. E. W. 1995. Simulated in-
telligent forces for air: The Soar/IFOR project 1995.
In Proceedings of the Fifth Conference on Computer
Generated Forces and Behavioral Representation.

Lehman, J. F.; Laird, J. E.; and Rosenbloom, P. S.
1996. A gentle introduction to Soar, an architecture
for human cognition. In Sternberg, S., and Scarbor-
ough, D., eds., Invitation to Cognitive Science, vol-
ume 4. MIT Press.
Lehman, J. F.; Van Dyke, J.; and Green, N. 1995. Re- "
active natural language processing: Comprehension
and generation in the air combat domain. In Proceed-
ings of the AAAI 1995 Fall Symposium on Embodied
Action.
Lewis, R. L. 1993. An Architecturally-based Theory of
Human Sentence Comprehension. Ph.D. Dissertation,
Carnegie Mellon University, Pittsburgh, Pennsylva-
nia. Available from Computer Science Department
as Technical Report CMU-CS-93-226.

Newell, A. 1990. Unified Theories of Cognition. Cam-
bridge, Massachusetts: Harvard University Press.
Pollack, M. 1990. Plans as complex mental attitudes.
In Cohen, P.; Morgan, J.i and Pollack, M., eds., In-
tentions in Communication. MIT Press.

Rubinoff, R., and Lehman, J. F. 1994. Real-time
natural language generation in NL-Soar. In Proceed-
ings of the Seventh International Workshop on Natu-
ral Language Generation, 199-206.

Sidner, C. L. 1985. Plan parsing for intended response
recognition in discourse. Computational Intelligence
1:1-10.

Tambe, M., and Rosenbloom, P. S. 1994. Event track-
ing in a dynamic multi-agent environment. Technical
Report ISI/RR-RR-393, Information Sciences Insti-
tute, University of Southern California, Marina del
Rey, California.

Tambe, M.; Johnson, W. L.; Jones, R. M.; Koss, F.;
Laird, J. E.;’ Rosenbloom, P. S.; and Schwamb, K.
i995. Intelligent agents for interactive simulation en-
vironments. AI Magazine 16(1):15-39.

Tambe, M. 1996. Tracking dynamic team activity. In
Proceedings of AAAI 1996.

Thomason, R.H. 1990. Accommodation, mean-
ing, and implicature: Interdisciplinary foundations
for pragmatics. In Cohen, P.; Morgan, J.; and Pollack,
M., eds., Intentions in Communication. Cambridge,
Massachusetts: MIT Press. 325-363.




