
Abstract

Social Laws for Agent Modeling

Dept.

Multiagent domains emphasize that agents
¯ should be able to predict actions of other agents.
A popular mechanism to achieve this is that of
providing agents with models of other agents. So-
cial laws have been proposed as a model of multi-
agent interaction with claims that they can get
rid of perception, reduce communication cost and
planning time. However the utility of social laws
for agent modeling has not been explored. In
this paper types of social laws are characterized
and criteria for evaluating and comparing them
have been defined. These criteria also serve as
measures of the utility of social laws in model-
ing agents. It is shown here that to be easier to
design and test, social laws should exploit other
representations like potential fields to model in-
teractions between agents. Social laws and be-
lief, desire and intention based (BDI) agent mod-
eling paradigm are compared. Use of laws to
encode recta-knowledge, characteristics of laws
and situations under which they can be used are
discussed. Some unaddressed issues have been
raised at the end.

1 Introduction

Multiple agents are proving to be useful for par-
allelization and decomposition of activities. In
particular, they emphasize distributed percep-
tion and actuation. For successful completion of
tasks, avoiding interference with the actions of
other agents, it is necessary for agents to pre-
dict actions of other agents. [Tambe et al 95]
point out that agent modeling (especially oppo-
nent modeling) is a key requirement for building
automated pilots. [Hill & Johnson 94] mention
that agent modeling capabilities are valuable for
intelligent tutoring, natural language processing,
expert consultation and tactical decision making.
Traffic control, coordination of vehicular traffic
or air traffic control illustrate situations where
software agents make decisions based on commu-
nication and agreement with other agents.
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Researchers like [Durfee 92] have claimed that
social skills learnt in childhood like sharing infor-
mation, playing fair, avoiding collisions with peo-
ple, putting things back at right places and clean-
ing up our own mess provide necessary and suf-
ficient skills for the components of a distributed
system. The notion of social laws is similar to
the notion of these social skills. [Shoham & Ten-
nenholtz 95] define a social law as a set of con-
straints on actions available to an agent. [Nagao
& Takeuchi 94] realize a social agent that hears
human-to-human conversation and identifies the
causes of misunderstanding. They point out that
social rules like "avoid misunderstanding", "do
not speak while other people are speaking", "si-
lence is not good" and "contribute whenever pos-
sible" are highly useful in a conversation. Desir-
able behavior is always easier to specify than an
optimal behavior and social laws provide a mech-
anism to express such preferences. Laws allow
agents to develop models of potential interactions
among their actions and those of other agents.

[Shoham & Tennenholtz 92] present a general
model of a social law in a computational system
and investigate some of its properties. This work
does not address the issue of how to evaluate
and compare social laws and use them to model
agents.

Social laws have been proposed as a model of
multi-agent interaction with claims that they can
get rid of perception, reduce communication cost
and planning time. For example, if there is an
N × N grid with N robots in first row, with only
one robot in a grid square and if each robot fol-
lows convention of staying in its column, colli-
sions are automatically avoided. Such a team
of robots can be useful for transporting material
from first row to last row. In this case, the robots
do not need to perceive each other and no com-
munication is required among them. However the
research lacks a formal approach to evaluate and
compare the laws. In this paper types of social
laws are characterized and criteria for evaluating
and comparing them have been defined. These
also serve as a measure of the utility of social
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laws in agent modeling. I argue that social laws
for modeling agents can be designed without trial
and error if representations like potential fields
are used to express them. The paper points out
the advantages of social laws over belief, desire
and intention based (BDI) paradigm. The lim-
itations of social laws in modeling agents have
been discussed. It is proposed that an integra-
tion of social laws and the BDI paradigm will
be a more emcient approach to modeling agents.
Some issues not addressed by previous research
have been raised.

This paper is organized as follows. Section 2
characterizes the types of social laws and defines
some criteria to evaluate and compare them. Sec-
tion 3 raises the issue of representations for social
laws to effectively model agents. In section 4 so-
ciai laws and BDI based paradigm are compared.
Section 5 discusses role of social laws in encoding
recta-knowledge, their characteristics and situa-
tions under which they can be used. Section 6
presents conclusions.

2 Formalization

In this section I characterize the types of social
laws and define criteria to evaluate and compare
them.

2.1 Types of social laws
In a general model of DAI systems, multiple
agents (distributed spatially, logically (softbots
on the same machine) or temporally) fulfill coor-
dinated tasks. Taking this as a basis, I identify
two types of social laws here and discuss their
utility in agent modeling.

K denotes the total knowledge required for a
task T, L denotes the set of social laws designed
for the task and A denotes the set of agents in
the colony.

¯ Laws based on knowledge decomposi-
tion

Here a task is decomposed into sub-tasks such
that each sub-task requires distinct knowledge

and can be allocated to a set of agents. By
distinct knowledge of different sets of agents,
I mean different goal fulfilling plans or <
condition, action > rules. Fulfillment of a task is
defined in terms of attainment of desired world
state. All agents dedicated to a subtask have the
same subset of the knowledge. Social laws can be
designed for agents allocated to a particular sub-
task. Consider the scenario where a set of robots
have laws for carrying out the task of moving un-
painted cans to a painting station (e.g. "do not
try to grasp a can that other robot is trying to"),
other set has laws for painting the cans (e.g. "do
not grab an unpainted can that is being painted")
and third set has laws for drying the painted cans
and putting them in a store (e.g. "do not pick up
a can dropped at the store" which avoids infinite
cycles). In a colony with laws based on decom-
position of knowledge, we have

3A, T, K, L[Needs(T, K) h -- U kj h A=
UaiA T = Ut~AL =
U zj A Anocated(a.
Needs(t , ) A Necds( b) A Has(a.

¯ Laws based on spatial decomposition
Here same task is carried out in different re-

gions of a workspace in parallel and the task is
fulfilled when individual subtasks in different re-
gions of the workspace are fulfilled. All agents
are controlled by the same set of laws. Examples
of this type of laws are those for searching an area
(e.g. "maintain a distance d from other robots"
so that no two robots search the same area), ex-
tinguishing fire etc. Let S denote the workspace.
Hence we have

BA, T, S, L[Needs(T, S) A S = U s~ A A 
Ua‘ AT = AAltocated(ai, ti) ==~
Needs(tj, sj) A Needs(tj, L) A Has(a,, L)]

If each agent models other agents in terms of
the laws that control them, it becomes possible
for it to evaluate the impact of its actions on
other agents and vice versa e.g. if the law of
maintaining a fixed distance from other robots is
used then every robot knows that its movement
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would cause its neighbours to move by a certain
distance which would be propagated through the
colony.

2.2 Criteria for evaluating laws

Here a number of criteria for evaluating and com-
paring social laws have been defined. Here it is
assumed that an agent is modeled by the laws
it obeys. Hence by an agent A1 having a model
of agent A2 I mean A1 knowing the laws that
A2 obeys. Since successful agent modeling is a
prerequisite for fulfillment of tasks in multiagent
domains and it is assumed here that laws are used
to model agents, these criteria also serve as mea-
sures of success of laws in modeling agents.

¯ Flexibility
Let sl denote the number of situations under
which a law Ii works. (A situation is a well
formed formula describing the state of an envi-
ronment.) Then a law 11 is more flexible than 
law 12 if and only if Sl > s2. A law incorporat-
ing more constraints is likely to be less flexible.
This notion of fiexibility is different from that in
[Briggs & Cook 95] because they add more laws
for more flexibility and I define flexibility for a
single law.

¯ Usefulness
In real world, the frequency of occurrences of the
situations under which a law works is more im-
portant, e.g. if a law 11 works under 10 situations
and a law 12 works under only one situation (un-
der which 11 fails) that occurs all the time (in-
finite frequency) then 12 is more useful than ll.
This is captured by usefulness of a law defined
as the sum of the frequencies of situations under
which it works,

tt

Xl,
i=l

where .fi are the frequencies and n is the number
of situations under which the law works.

¯ Efficiency
Let t(il, Ti) denote the time required to fulfill a
task Ti using a law li. Then a law Ii is at least
as efficient as a law lj if
VTk E T,t(ii, Tk) < t(lj,Tk) where T is the space
of tasks that can be fulfilled by using both Ii and
lj independently. We define a space of laws as
a set of laws. We denote by TG(L) the great-
est task space fulfillable using a space of laws L.
Then a space of laws Li is more efficient than a

of laws Lj if ~ > ~. It shouldspace
be noted that simple tasks like goal seeking and
obstacle avoidance can be fulfilled by using a few
laws without the need to use plans. For compli-
cated tasks, laws will be used with plans, in that
case the above definition assumes that different
spaces of laws being compared are used with the
same set of plans or the same set of actions avail-
able to agents in a colony.

¯ Uniformity
Using a law, agents will fulfill a task taking var-
ious times e.g. let us say that all agents in a
colony have to reach a goal avoiding each other,
using a law they can reach the goal but will take
different times. Let ti be the time taken by agent

ai to reach the goal using law lk. Let t = ~-~ be
the average time required to reach the goal in the
colony A. Then I define the mean squared error

~as of of the lawuniformitya measure
Ik. A more uniform law will have a lower mean
squared error.

¯ Speedup
This is a measure of reduction in the time re-
quired to fulfill a task using a social law over some
other agent modeling paradigm. Let t(L,Ti) 
the time required to fulfill a task ~ using a space
of laws L alone or a combination of L and some
other agent modeling paradigm p. and t(p, Ti) be
the time required to fulfill the same task using the
other agent modeling paradigm p alone (e.g. BDI
paradigm discussed in section 4). Then ~ ist( L,T~)
the speedup.
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3 Representations for social
laws

[Shoham & Tennenholtz 95] propose some traffic
laws to ensure that the robots in a colony reach
their destinations and avoid collisions. However
these laws are required to specify a number of
constraints like directions of motion of robots in

¯ odd and even rows and handle boundary condi-
tions like reaching rightmost or leftmost column.
The sophisticated traffic law that they propose
involves more constraints. These constraints are
derived using a trial and error procedure.

The potential field based representation that I
use here does not require the trial and error pro-
cedure.

4- 1)), polynomial time. In worst case p = 1 
still the complexity is polynomial. Let us sayN~

that at each step, each robot is concerned about
collisions with other robots. This requires them
to predict the magnitude and direction of move-
ments of other robots. Then each robot can imag-
ine itself to be present in other robots’ current lo-
cations and determine the distance to their goals
and distances to robots sensed by them from that
location. Hence at time t, each robot can deter-
mine the path traced by every other robot during
the time interval It, t-I-l] using the laws. Hence
the result.D
The two laws could be superimposed to achieve
the desired result because of the representation
chosen.

Theorem 1. In absence of local minima, po-
tential fields can be used to define social laws to
model robots and seek goals in a colony of robots
in polynomial time.

Proof . This task needs that robots should
avoid each other and reach their goal. This nat-
urally leads to two social laws - "avoid other
robots" and "progress towards goal". Choosing
potential fields to encode these laws, we can de-
fine potential functions for goals that exert at-
tractive force on the robots and each robot it-
self will have a potential function to exert re-

. pulsive force on its neighbors. At each step
each robot sums the forces exerted by its goal
and other robots it senses and computes the
next direction and magnitude of its motion as
per xt+l = f(xt,~repulsive "[" ¢~goai), Yt+I ----

/(yt, E ,.ep.18i,, + go.l).
Let us say that there are N robots in the colony

and the average number of steps required for a
robot to reach its goal is S. At each step let
us assume that each robot senses on an aver-
age, pNother robots where 0 < p < 1--~.
Then each robot will have to compute pN repul-
sive forces and an attractive force. Hence the
number of steps required for goal seeking using
potential fields in a robot colony is (N S (p 

4 BDI Paradigm

[Georgeff & Lansky 87] develop a procedural rea-
soning system based on the attitudes of belief,
desire and intentions. The beliefs are facts about
the world and desires are the goals to be real-
ized. An intention is a commitment to an act
whilst in a certain mental state. At any given
instant, the actions being considered by PRS de-
pend not only on its current desires or goals but
also on its beliefs and previously formed inten-
tions. The system can modify its beliefs, de-
sires and intentions. [Jennings 95] develops a
model of cooperation based on joint intentions
that specifies pre-conditions to be attained be-
fore collaboration can commence and prescribes
how to behave both when joint activity is pro-
gressing satisfactorily and when it has trouble.
Joint intentions are a joint commitment to per-
form a collective action while in a certain shared
mental state. In the BDI paradigm, providing an
agent A with model of agent B means letting A
know the beliefs and desires of B. Then A can
use beliefs and desires of B and knowledge of the
current situation to infer B’s intentions and pre-
dict its actions. In the work [Nagao 93], a plan
recognition module determines a speaker’s inten-
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tion by constructing his belief model and dynam-
ically adjusting and expanding the model as the
conversation progresses. Social agents using the
BDI paradigm consider other agents’ (including
humans) beliefs and intentions and behave coop-
eratively.

If all agents had unlimited processing power
and complete model of the beliefs, desires and
intentions of other agents (ideal case), it would
be possible for each agent to justify current ac-
tions of other agents and generate a trajectory of
their future actions. Bandwidth limitations make

¯ it hard for agents to continuously receive commu-
nication about the status of all other agents and
it is difficult for agents to perform local process-
ing, reason about activities of other agents and
use those inferences to modify local processing. It
is not possible for agents to update other agents’
beliefs in real time, particularly for a colony of
large size. The model of multiagent conversa-
tional state in [Nagao & Takeuchi 94] allow each
agent to have knowledge of belief space of every
other agent, leading to N (N - 1) interactions.
[Nagao & Takeuchi 94] identify three types of
communication mismatch - (1) Illocutionary act
mismatch (A asks B, "Do you know what hap-
pened today" with the intention of knowing it
from B but B says that he does know what hap-
pened and terminates the conversation. A in this
case does not get the required information.) (2)
Belief inconsistency (A asks B the same ques-
tion and B assumes that A knows the answer.)
(3) Plan inconsistency (A asks B the same ques-
tion as in 1 and B assumes that A has a plan

¯ of informing about the event). I claim that each
type of mismatch can be avoided by social laws
like "do not make queries that state intentions
ambiguously", "do not assume anything that is
not explicitly stated in the query" etc. The law-
based approach may result in longer queries but
it will save the effort going into debugging the
mismatches. Extending BDI paradigm to com-
plex collaborative activities requires modeling of
communication, joint goal and joint beliefs. The
interfaces among these need to be carefully es-

tablished. A set of social laws provides a sin-
gle homogeneous medium to model agents. BDI
based agents negotiate in case of failure to pre-
dict other agents’ actions or deadlock. One ad-
vantage of social laws over negotiation is - laws
can be designed for any size of some domains e.g.
in the case of traffic, the number of vehicles or
robots is an indicator of the domain size. The ef-
fort involved in negotiation (e.g. the time taken
to reach an agreement) is however proportional
to the number of agents involved in the process.

It is necessary to design social systems in such
a way that the interaction among agents of the
system and their interaction with the environ-
ment converges towards the desired performance.
The convergence properties are easier to test if so-
cial laws are used to model agents (as illustrated
in theorem 1).

It is shown here that using social laws allows us
to predict long term effects of agent interactions
that are not apparent if BDI paradigm is used.
[Gordon 95] mentions that the state of an indi-
vidual ant in a colony depends only on the sum
of the weighted interactions between individuals.
The theorem below states provable properties of
a similar class of laws.

Let there be a M × M × M 3-D grid made
up of cubes of side h. Let there be an
agent at each point in the grid (Xl,X2,X3) 8. t.

xl, x2, x3 E {0, h, 2h, ..., Mh}. Let fbe a function
of xl, x2, x3, t where the triple (xl, x2, x3) repre-
sents a point in the 3-D world and t denotes time.
Let fll = ~72f, f12 = ~73f,~3 = V4f,...,~n-1 =
V"f. Let al,c~2,t~a,...,~n-1 be real constants
such that not all of them are zero.

Theorem 2.

(i) The solution of any linear combination

o~131 + 0~2/32 + ~3/33 + ... + o~n-1/3n-1 -- 0 cor-
responds to a social law for updating f that will
result in an infinite deadlock, where the deadlock
is reached due to I°o-{I < E, e > 0 is a constant,
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where ~t is given by

n--1

i----1

(ii) This class of laws lead to deadlock irrespec-
tive of the radius of communication.
(iii) Changing the distribution of]locally or glob-
ally does not resolve the deadlock.

Some agents (especially learning agents) have
the potential to form their own goals and in-
tentions, to initiate actions on their own. Such
autonomous agents may be used as consultants.
Such agents may be employed for secretarial

¯ work. Such agents might respond to e-mails, re-
veal organizational details and even release per-
sonal records. Agents with more autonomy might
modify records, make undesirable commitments
and intentionally supply incorrect information.
The conformance of behavior of these agents
to their owner’s expectations is more important
than their intelligence. It is not clear how a pure
BDI model can control such agents. Such agents
need a model of expectations of their human user.
These expectations can be encoded as laws to be
obeyed by the agents.

[Kautz et a194] describe software agents called
"visitorbots" that handle activities involved in
scheduling a visitor to their laboratory but raise
the issues of reliability and predictability of such
agents. Social laws can be used to control and
model these agents. These agents can have laws
like "do not delete a mall without permission of
the human user", "do not forward any mail to
other agents without permission of the human
user". These laws in fact supply an agent with

¯ at least a partial model of other agents e.g. if all
software agents are to obey the law of not for-
warding a mail to other agents without permis-
sion of their human user, agents can infer that
other agents will not forward any mails to them
without such a permission. Such a model also
allows the agents to infer that they should send
a request to the concerned human user to allow

his agent to forward his mall to them.

5 Other aspects

¯ Meta-knowledge Laws can be used as a
medium to represent meta-knowledge. Their pri-
mary use can be in conflict resolution. [Asimov
42] proposes three laws of robotics - (1) A robot
may not injure a human being, or, through inac-
tion, allow a human being to come to harm. (2) 
robot must obey orders given to it by human be-
ings except where such orders would conflict with
the first law. (3) A robot must protect its own
existence as long as such protection does not con-
flict with the first or second law. Let us say that a
robot has a behavior to extinguish fire. This be-
havior may be triggered when fire is created by A
for the purpose of cooking food. However A cer-
tainly does not want the robot to extinguish this
fire. The expectation of A can be modeled by the
robot in the form of the law "do not extinguish
fire created for cooking". Let us say that a soft-
bot is asked to delete accounts of students to free
up some space at the end of semester. But what
about those students who have got "incomplete"
grade? This erroneous behavior of the softbot
can be eliminated by controlling it by the law
"do not delete an account of a student who got
an incomplete grade."

¯ Algorithm Webster’s dictionary defines a
law as a rule binding on a community, a sys-
tem of such rules or an invariable sequence of
events in nature. [Shoham & Tennenholtz 95]
define a law as a set of constraints. [Briggs &
Cook 95] define a flexible law as a set of laws
giving various options to an agent. The set of
options and the set of constraints can be repre-
sented as a computational procedure analogous
to an algorithm. The reverse also holds - it may
be possible to show that an algorithm if used by
an agent does restrict its actions imposing one or
more constraints, behaving like a law. This leads
to the issues - What criteria should be fulfilled
by a representation to qualify as a law? An at-
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tempt is made to answer this question here. Let
us say that an agent can execute m actions in
absence of a particular representation R, where
R is any representation which when possessed by
the agent can affect its decision making. Let m~

be the number of actions that the agent can ex-
ecute when it is supplied with R. Then R can

mt

be a law if -~- is less than 1 and is sufficiently
small. Hence the power to shrink the space of
c~ecutable actions is the characteristic of a law.
This is a necessary criterion but not sufficient.
The space of actions executable by an agent can
be reduced in many other ways like reducing its
degrees of freedom or modifying its environment
such that fewer actions are executable. R can be
a law if the computation required to execute ac-
tions recommended by R is bounded and can be
carried out based on local information. If R is a

"law and a~, a are the actions recommended by R
and other representations of an agent (excluding
R) respectively, then I will r eceive priority o ver
a. R cannot be a law if actions recommended
by it are all that an agent can execute and these
actions are executed at a very low frequency e.g.
let us say that robots in a colony have a behavior
to pick up cans and there are conflicts because of
multiple robots trying to pick up same can. Let
us assume that to resolve this conflict, the robots
are programmed to obey the law "do not pick up
a can if some other robot is approaching it". This
can lead to deadlock where no robot picks the can
because of the assumption that some other robot
will pick it up. If a robot from this colony is iso-
lated and programmed to pick up such cans to
resolve the deadlock, then its representation will
be more of a behavior or exception handler rather
than a law.

¯ When to use7 Here an attempt is made
to identify the conditions under which social laws
can be used. If agents in a colony have intentions

that need similar control, this control can be pro-
vided by a social law. If there are n softbots such
that i th softbot can delete upto ai files for the
purpose of cleaning up directories, each softbot
can be controlled by the law "do not delete more

than ~ files". If a user decides that no more
n

than g files should be deleted, one can modify
the above law to get "do not delete more than
n£ files". This law eliminates the need for agent
modeling. In the absence of this social law, each
agent would be required to keep a track of files
deleted by other agents and accordingly modify
its decision to ensure that no more than g files
were deleted. However agents using this law will
not delete any files if the number of files to be
deleted is less than the number of agents (as in
that case the ratio is ~ is less than 1) proving
the law to be ineffective. In that case one can
use models of other agents. Using social laws to
predict actions of other agents essentially involves
perceiving the current situation, finding out what
laws of other agents are applicable in that situa-
tion and using that information to predict their
actions. The next step is to see if these actions of
other agents are co-operative, harmful or neutral.
If an agent A1 is trying to push a table and sees
agent A2 nearby and A1 knows that A2 obeys
the laws "do not try to push objects weighing
more than W kg" and "avoid obstacles", then A1
can conclude that As will either be co-operative
or neutral (to arrive at an exact conclusion, A1
needs to know weight of the table it is pushing).
There may be situations in which no laws are
applicable, in particular when agents are doing
tasks that are not controlled by laws. The utility
of other agent modeling paradigms like BDI be-
comes apparent here. A more efficient approach
would be to combine the BDI paradigm and so-
cial laws. This approach to agent modeling is
best described by figure 1.

6 Conclusion

A key problem in characterizing the effects of a
given agent action on the world involves how to
specify which aspects of the world do not change,
the frame problem. Social laws can be restrictive
enough to alleviate the frame problem (by reduc-
ing the reasoning an agent has to do about the
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Laws

I

Figure i: Integrated approach

actions of other agents). The ease with which
social laws allow us to control the scope of rea-
soning is absent in BDI paradigm. I do not claim
that laws can always completely replace the BDI
paradigm though in simple domains like robot
navigation it is possible. BDI paradigm however
will be benefitted by allowing incorporation of
social laws, especially for reducing negotiation,
avoiding revision of beliefs and intentions etc.

The criteria defined in section 2 are essential
for comparing the utility of social laws in mod-
eling agents. As shown in section 3, using social
laws expressed in proper representations allows
us to test convergence properties. Most theoreti-
ca/progress in DAI continues to be in the domain
of homogeneous agents. An important question
is - how can heterogeneous agents built by dif-
ferent developers using different techniques col-
laborate? I believe that bootstrapping a system
of such agents with a set of social laws will be a
useful solution.
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