From: AAAI Technical Report WS-96-02. Compilation copyright © 1996, AAAI (www.aaai.org). All rights reserved.

Recognition and Critiquing of Erroneous Agent Actions

Ole Jakob Mengshoel and David C. Wilkins
Department of Computer Science and Beckman Institute
University of Illinois, Urbana-Champaign
Urbana, IL 61801
{mengshoe, wilkins}@cs.uiuc.edu

Abstract

An agent can perform erroneous actions. Despite such
errors, one might want to understand what the agent
tried to achieve. Such understanding is important,
for example, in intelligent tutoring and expert cri-
tiquing systems. In intelligent tutoring, feedback to
the agent—i.e. the student—should focus on which
actions made sense and which did not. To achieve
such understanding, we propose a combined planning
and plan recognition approach. This paper focuses on
plan-based plan recognition. We describe a generic
recognition algorithm and show how it can be used
for plan recognition and critiquing. The approach is
illustrated using a real-world application in the area
of multi-media tutoring of ship crisis management.

Introduction

An agent can perform erroneous actions. Despite such
errors, one might want to understand what the agent
tried to achieve. Such understanding is important, for
example, in intelligent tutoring and expert critiquing
systems. We are concerned with such systems in the
context of crisis management. In particular, we are
developing an intelligent tutoring system based on an
interactive crisis simulator. The crisis simulator uti-
lizes multi-media technology that immerses a ship cri-
gis management expert in a very realistic simulation.
Such a simulator raises a variant of the well-known
problem of credit (or blame) assignment: Given a se-
ries of actions on part of an agent, which actions are to
be given credit (or blame) for the success (or failure)
of the agent, and to what degree?

Central in this question is the notion of action, and
in particular reasoning about action in the form of
planning and plan recognition. A number of plan
recognition approaches have been proposed (Schmidt,
Sridharan, & Goodson 1978) (Genesereth 1982) (Kautz
& Allen 1986) (Charniak & Goldman 1993) (Gertner &
Webber 1995). Plan recognition recognizes prototyp-
ical behavior, but typically assumes complete knowl-
edge of plans in the domain (Kautz & Allen 1986).
Planning, on the other hand, does not assume com-
plete plan knowledge. Plans are constructed, tailored

61

to the situation at hand (Fikes & Nilsson 1971) (Sacer-
doti 1975) (Hammond 1986) (Simmons 1992) (Hanks
& Weld 1995). Thus, an integration of plan recogni-
tion and planning seems fruitful, and the present work
is a step in that direction.

Such an integrated approach to planning and plan
recognition needs to be robust to agent error. Stu-
dents typically commit a number of errors when using
an interactive crisis simulator, and agents in general
make errors. Errors have been examined in expert cri-
tiquing and intelligent tutoring system (ITS) research.
In expert critiquing, human error has been investi-
gated (Silverman 1992), however this line of research
has generally, with some notable exceptions, not been
within the realm of planning (Silverman 1992, p. 123).
One exception is ONCOCIN, which performs skeletal-
refinement planning in an expert critiquing context (Tu
et al. 1989). Another exception is TraumAID, which
combines progressive horizon planning with expert cri-
tiquing (Rymon, Webber, & Clarke 1993) (Gertner &
Webber 1995). In intelligent tutoring, the notion of
a bug or error library has been used to recognize er-
roneous student plans (Genesereth 1982) (Polson &
Richardson 1988). A limitationis that it is very tedious
to construct a bug library in a real-world application
such as ours.

Plan recognition approaches have typically ab-
stracted away the problem of erroneous plans (Kautz
& Allen 1986). In planning, the notion of critic was
introduced to detect helpful or harmful interactions in
plans (Sacerdoti 1975). Both interaction types are sim-
ilar to student errors. Similarly, the areas of transfor-
mational planning, adaptive planning, and case-based
planning all contain transformational (i.e. refinement
and retraction) steps that can remove ‘errors’ from a
plan (Hammond 1986) (Simmons 1992) (Hanks & Weld
1995). Compared to operations needed to recognize
and critique student errors, both plan refinement and
retraction are very limited.

We believe that existing expert critiquing, ITS, plan
recognition, transformational, adaptive and case-based
planning approaches can be improved in situations
where an agent’s (e.g. a student’s) actions contain



many errors. To achieve this, we propose a combined
planning and plan recognition approach. This paper
focuses on plan-based plan recognition. We describe
a generic recognition algorithm and show how it can
be used for plan recognition and critiquing. The ap-
proach is similar to the ITS notion of model tracing
(Anderson et al. 1990) (Anderson et al. 1995) because
a generative model of the cognitive skill, a planner, is
employed. The approach is different from model trac-
ing in that we use a planner and a plan representation
and in that we avoid modeling erroneous student rules
(or a bug library).

This paper is organized as follows. The first section
describes the application, crisis management training,
and what kinds of errors students perform. The sec-
ond section presents our approach to plan recognition
and critiquing. The third section gives an example of
how the approach works for crisis management train-
ing. The final section concludes and mentions areas for
future work.

Background on Damage Control

We present here the ship damage control domain, a
multi-media tutoring system that has been developed
for the domain, and some types of errors students per-
form when using the training system.

Damage Control Application

On Navy ships there is a designated officer, the dam-
age control assistant (DCA), who is in charge of han-
dling damage to the ship. The DCA reports to the
commanding officer, and commands a number of re-
pair teams that investigate, report, and repair damage
to the ship as it occurs. A repair party belongs to a
repair station, and the DCA commands repair parties
by communicating with the repair station leader.

In order to train DCAs in a realistic way, an inter-
active courseware approach has been taken. In par-
ticular, an interactive multi-media system called in-
tegrated damage control team training (IDCTT) has
recently been developed. IDCTT exposes the student
DCA to a scenario containing a mine hit and a missile
hit along with the resulting damage to the ship. Dam-
age amounts to fire, smoke, and flooding of different
spaces in the ship, and the student DCA directs virtual
investigation and repair teams by using IDCTT. The
scenario, which lasts approximately 20-25 minutes, is
summarized in Figure 1. In the figure, approximate
times for events and main events are shown to the left.
The main part of the figure shows the six main goals
(‘Zebra reported to the bridge,” ‘Aft flooding isolated,’
...) that the student needs to identify and achieve.
Above each goal is an elongated rectangle, illustrating
that some set of actions needs to be performed in or-
der to achieve the goal. Above each action set there
is a damage description (‘Aft flooding,’ ‘Starboard FM
low,” ...) or a status discrepancy (‘Zebra not set’).

The scenario goes through three phases, indicated
by horizontal dotted lines in the figure. Consider the
second phase, when a mine hits the ship, resulting in
three problems. One of these, the ‘Aft fire’, needs to be
followed up by the following orders (or, more generally,
commands) on part of the student: ‘Investigate space
3-370-0-E’ sends an investigator to the space named
3-370-0-E with a fire alarm. In case of a report about
a fire from the investigator, the DCA should order ‘Set
fire boundaries 442, 410, 370, 338’, where the num-
bers represent bulkheads aft and forward of the fire in
compartment 3-370-0-E. After hearing the report ‘Fire
boundaries set’, the DCA should order ‘Fight fire in
space 3-370-0-E’. If the DCA then receives the report
‘Fire out in space 3-370-0-E’, the fire fighting effort
succeeded. The scenario progresses according to which
actions the student takes, and the ship either stays
afloat or sinks.

The IDCTT system is currently used towards the
end of a Navy course for student DCAs at the Navy’s
officer training school in Newport, Rhode Island. A
group of two or three students cooperate and are su-
pervised by one instructor when using the IDCTT sys-
tem. One of the students plays the DCA, the others
play his assistants. After one IDCTT session, the in-
structor gives feedback to the group of students.

From a planning perspective, the task of the stu-
dent is to generate orders such that all problems are
resolved—i.e. the implied goals are achieved. From a
plan recognition perspective, the task of the instructor
is to identify what the student’s orders are meant to
achieve, and to give feedback to the student concerning
those actions. One goal of this research is to supple-
ment or replace the critique as given by the instructor
with automatically generated feedback.

Student Commands and Errors

Students control IDCTT, and similar simulation sys-
tems, using commands. A command c consists of a
command type, command parameters and a command
time. As an example, the command

10:00 REPAIR 3 - Ordered to set fire boundaries
442, 410, 370, 338

has command type ‘set fire boundaries’, command pa-
rameters ‘REPAIR 3’ and ‘442, 410, 370, 338’, and
command time ‘10:00’. Example commands are dis-
played, along with other IDCTT transcript messages,
in Table 1. The commands of one student handling the
fire in generator room 3-370-0-E are shown.}

Analysis of IDCTT transcripts of student DCAs
shows that a number of errors are performed. Infor-
mally, we define an error as a change that can be made

1The message at 07:20 is actually ‘REPAIR 3 - Re-
ports investigators away’, but the present critiquing system
cannot handle such messages. Therefore we have made a
simplification.

62



Time Event

0 BTt e e L
Zebra not
set
Start
{
End
Zebra reported
to bridge
6 MR e e AN
hit
Starboard FM
Aft flooding low Aft fire
Start Start Start
v T T
1 ! 1
¥ ] v
1 i '
1 | Ll
- ]

11 Missile ----|-f---- b iiahdiaiandel & EEEEEE B O pupupupug ~F - bl i SRR | A . | VOO
Chill water Forward
rupture fire

End End End
Start Start
Aft flooding Starboard FM Aft fire
isolated pressure normal out
T T
1 1
¥ ¥
1 i
1 1
¥ ¥
End End
Chill water Forward fire
pressure normal out
25 End  m-omemmeeeee e\ A s e el T

End

Figure 1: Overview of the IDCTT scenario.

63



Command Command Command type and parameters
time parameter
06:45 DCCO Reports fire alarm generator room 3-370-0-E
07:20 REPAIR 3 Ordered to investigate 3-370-0-E
09:27 DCCO Reports halon alarm generator room 3-370-0-E
09:57 REPAIR 3 Reports fire in generator room 3-370-0-E, Halon activated, Fireparty en route.
10:09 REPAIR 5 Ordered to fight fire in 3-370-0-E
10:13 REPAIR 5 Recommends you review their last order
10:27 REPAIR 3 Reports halon ineffective in generator room 3-370-0-E
10:42 REPAIR 3 Ordered to fight fire in 3-370-0-E
11:40 REPAIR 3 Reports electrical and mechanical isolation is complete
11:44 REPAIR 3 Reports fire party OBA light off time
12:01 REPAIR 3 Ordered to fight fire in 3-370-0-E
14:53 REPAIR 3 Reports fire spreading rapidly aft of generator room
15:09 DCCO Reports AFT VLS high temp alarm
15:14 CSMC Reports AFT VLS high temp alarm, smoke reported, auto sprinkler failure
Table 1: Example commands issued by a student DCA.
Error type Error subtype Example

Missing command
Swapped commands
Redundant command

Command error

Skipped ‘set fire boundaries’
Swapped ‘set fire boundaries’ and ‘fight fire’
Included ‘electrical and mechanical isolation’

Incorrect parameter
Incomplete parameter
Swapped parameter

Parameter error

Incorrect fire boundaries: ‘480, 400, 350, 330°
Incomplete fire boundaries: ‘, 410, 310,
Swapped fire boundaries: ‘338,310,410,442’

Table 2: Types of errors performed by DCA students.

to an incorrect command, making it a correct com-
mand. A correct command is part of a correct set of
commands, corresponding to a set of steps, i.e. a plan.
In general, we are looking for smallest total error in
comparison to some correct plan, according to some
measure, to be described below. For the purpose of
this paper, we are concerned with two types of student
errors:

e Command error: There is an error in a command,
or among a set of commands, when viewed as part
of a procedure to achieve a goal.

e Parameter error: Correct command type is invoked,
but with at least one erroneous parameter.

Examples of the two error types are presented in Ta-
ble 2. The examples of parameter errors in the table
relate to the correct fire boundaries ‘442, 410, 370, 338’
to be used for the generator room fire in the scenario.

Plan Recognition and Critiquing
The combined planning and plan recognition approach
is outlined in this section.

System Architecture and Overview

The system architecture consists of these components:
planning, plan recognition, plan critiquing, and dia-
logue generation. Here we address plan recognition and

64

critiquing. Plan recognition seeks to answer the ques-
tion: What are the intentions of the student? Specifi-
cally, we interpret this as searching for a plausible plan,
which is a correct solution representing what the stu-
dent is trying to achieve (Mengshoel, Chauhan, & Kim
1996).

A student’s interaction with a scenario is captured in
the form of a transcript T'. A transcript 1" consist of a
sequence of transcript messages ¢;,i.e. T = (t1,...,1,).
Not all transcript messages are interesting from the
perspective of plan recognition and critiquing. In par-
ticular, we focus on messages that are commands from
the student, and denote these student commands C,
where C' = (¢1,...,¢m), where m < n.

A plan Pis a tuple (S, K, L), where S is a set of steps
(operators made unique); K is a set of constraints, or-
dering constraints or binding constraints; and L is s
set of causal links, (si, ¢, 5;), where s; and s; are steps,
¢ 1s an expression. An operator is a STRIPS operator
(Fikes & Nilsson 1971) (Hanks & Weld 1995). Fig-
ure 2 shows example plans. A rectangle represents a
STRIPS operator and a directed edge a causal link.
A literal above a STRIPS operator is a precondition,
a literal below (and at the tip of a causal link) is a
postcondition. There are two dummy STRIPS steps
START, with postconditions only, and END, with pre-
conditions only, which represent the beginning and end
of the plan respectively. The START step causes the



initial state, while the END step has the goal state as
precondition.
This is the top-level algorithm:

Algorithm:

e Execute Planner(l, O, G) to compute plans PP

e Execute Generic-Recognizer(C, SS, m, o, c),
where §S = {S|P = (S, K,L) € PP}, to com-
pute closest match P’ and matching R

e Execute Plan-Critiqguer(C, P’,G,R) to produce
and present a critique

The Planner is given inputs initial state I, operators
O, and goals G, and computes plans PP. The stu-
dent’s orders C as well as correct plans PP are input
to the Generic-Recognizer, which computes a plausi-
ble plan P’ as well as how it relates R to the student’s
commands C. The domain-specific functions m, o, and
¢ are also input to this procedure. C, P’, and R are
then used by the Plan-Critiqguer to generate a critique
of the student.

We assume that a partial-order planner from the
STRIPS tradition is used (Fikes & Nilsson 1971)
(Hanks & Weld 1995), and do not discuss it below. The
Generic-Recognizer and Plan-Critiquer algorithms are
presented in the following.

Generic-Recognizer Algorithm

The essence of the algorithm is to transform C and
S € SS into a weighted bipartite graph G with par-
tite sets A and B (Cormen, Leiserson, & Rivest 1992)
(Knuth 1993) (Mengshoel, Chauhan, & Kim 1996).
Hel'e, SS = {Sl, .. .,Sm}, and Sz = {Sil, - .,Sin}.
The Generic-Recognizer algorithm finds some solution
S with highest total matching weight:

Input: Student’s solution C, solutions S5,
matching function m, projection function o, com-
plexity function ¢

Output: Relation R between ¢/ C C, §' C S,
where S € SS, and w € [0, 100]

Algorithm:

e For each component F of C, create a vertex u
in A
e Forall S; € 5S:
— For each component H of S;, create a vertex v
in B,:
* For each F (with vertex u) that corresponds
(i.e. o F') = o(H)) to H (with vertex v), cre-
ate an edge uv € E;
* Compute edge weight using matching score
function m: w(uv) = m(F, H) for all uv € E;
— Execute Weighted-Bipartite-Matching(G;, w)
to calculate total weight W(S;) and matching
N;, where G; = (AUB ;)
e Among all S; € S5, find the one with high-
est weight W, and the corresponding relation

N from C' C C to &' C S. If there is a tie be-
tween weights, pick the system solution S; such
that ¢(S;) < ¢(Sj). If there is a tie again, pick
an arbitrary system solution.

e R is easily computed from N: If (u,v) € N,
then uv € E; for some %, and w(uv) exists. Let
(u,v, w(uv)) € R.

Weighted- Bipartite- Maiching is a well-known algo-
rithm used to compute the the weight of a matching; it
is often called the ‘Hungarian’ algorithm (Knuth 1993).
The functions m, o, and ¢ depend on how the Generic-
Recognizer algorithm is used. Intuitively, m expresses
the degree of match between a component in C and a
component in some S. The function o expresses the
‘projection’ or ‘origination’ of a component. For ex-
ample, if we consider a command, the projection is
merely the command type. The function ¢ expresses
the complexity of a solution. For example, a solution
consisting of more components than another can be
considered more complex. Thus the number of compo-
nents can be used for c.

Command Recognition Functions

The Generic-Recognizer algorithm needs to be pro-
vided with the domain-specific functions m, o, and c.
These are described below.

Let n and pre be, respectively, functions that return
the name and preconditions of a step S. The name n of
a step is the step type and step parameters—analogous
to for a command. Now we define the origination func-
tion o as: o(n(S)) = t, where S is a step and ¢ is the
step’s type.

Now consider the matching function m. These are
the considerations for matching two actions. An ac-
tion is an order generated by the student or a step
generated by the planner. First, the actions match
only if they have the same action type. So the or-
der Fight-fire(Repair-3, 3-370-0-E) matches the
step Fight-fire(Repair-5, 3-370-0-E). However,
Fight-fire(Repair-3, 3-370-0-E) does not match
Investigate-space(Repair-3, 3-370-0-E).

The second consideration for matching two actions
is that parameters are matched on a parameter by pa-
rameter basis and according to their type. Example pa-
rameter types are space, like 3-370-0-E, repair locker,
like Repair-3, and boundaries, like (442, 410, 310,
338). Parameters can be considered as numbers or
strings. For example, consider the correct fire bound-
aries for the fire in space 3-370-0-E, (442, 410, 310,
338). Possible erroneous ways to specify this boundary
are: (338, 310, 410, 442), (450, 420, 300, 330)
and (142, 410, 170, 538). In the first case, the
problem appears to be that the DCA has input the
correct boundaries incorrectly. Here, we may consider
the boundary as a string and do an edit distance opera-

s E'tion. In the second case, the boundaries are reasonable

but not quite correct, and the DCA has input them cor-
rectly. Here, it is appropriate to regard the boundaries

65



START

N

) Boundaries(3-370-0-E,
Damage(Fire, 3-370-0-E) 442. 410, 310, 338)

Damage(Fire, 3-370-0-E)

START

Boundaries(3-370-0-E,
442, 410, 310, 338)

Investigate-space-
(Repair-3, 3-370-0-H)

Set-fire-boundaries
(Repair-3, 3-370-0-E, 442, 410, 310, 338)

Investigate-space-
(Repair-5, 3-370-0-5)

Set-fire-boundaries-
(Repair-5,3-370-0-E, 442, 410, 310, 338)

l l

Report(Repair-3, Fite, 3-370-0-E) Fire-boundaries(3-370-0-E,
442. 410, 310, 338)

Fight-fire-
{Repair-3, 3-370-0-H)

l

~ Damage(Fire, 3-370-0-E)

END

l l

Report(Repair-5, Fire, 3-370-0-E)

Fire-boundaries(3-370-0-E,
442, 410, 310, 338)

Fight-fire-
{Repair-5, 3-370-0—&

l

~ Damage(Fire, 3-370-0-E)

END

Figure 2: Example plans. The only difference between them is that in the leftmost plan, Repair-3 is ordered, while
in the rightmost plan, Repair-5 is ordered. Repair-3 and Repair-5 are repair station which the DCA communicates

with.

as a sequence of numbers, and perform arithmetic op-
erations. In the third case, the boundaries do not make
sense at all. So neither an edit distance transformation
nor arithmetic operations would help.

More formally, let f and h be two actions to be
matched, with

n(f) = tf(pfl""’p.fn)7

and
n(h) =th(tps,-- ) Phm)-
The function m is defined as follows:

if o(n(f)) # o(n(h))

0
)= S mamtscnd ) 2

where
my(s,t) if s, are boundaries
m’(s,t) = { my(s,t) if s,t are spaces
m/(s,t) otherwise
So there is a number of parameter types, where for
each there is a matching function such as mj,m/, or
m!,. Example function definitions follow, assuming
that we perform matching on a scale from 0 to 100.
Here O designates no match, 100 full match.
The general matching function m} (s, ) is defined as:

, _J 100 ifs=t
Mo(s,t) = { 0 otherwise

In the boundary matching function mj, the arith-
metic distance operations ¢ and the edit distance op-
eration e are utilized:

my(s,t) = min(e(s, t), a(s, t))

66

Arithmetic distance a is defined as follows:

1 4 i — 15
a(s,t) = 100 — [_?lngls__i_J )
i=1 '™

ax — fmin

where faax and fmin are maximal and minimal bulk-
head numbers respectively (for the particular ship in
question). u;, where u = s or u = t, designates bulk-
head numbers in the boundary. u1, uz, ua, and u4 des-
ignate secondary aft, primary aft, primary forward,
and secondary forward fire boundary respectively.

Finally, consider the complexity function ¢. We de-
fine ¢ as:

e(8) = 181,

where S is a set of steps.

Plan-Critiquer Algorithm

There are many ways to give feedback to a student,
both in terms of content and structure. Content-wise,
we base feedback on the matching plan and include
negative feedback. Structure-wise, we structure the
feedback according to goals.

The Plan-Critiquer algorithm is as follows:

Input: Student’s solution C', matching plan P’,
goals G, matching R

Algorithm:

e Critiquer(END, C, P, R)

e For each command ¢ € C:

— If 3r = (¢,8,n) € RAn =0 then
print( “Redundant command”, ¢)



START

Boundaries(3-370-0-E,

442, 410, 310, 338)

Set-fire-boundaries
(Repair-3, 3-370-0- F 442,410, 310,338)

END

l

Investigate-space- / \
(Repair-3, 3-370-0-K)
\ Damage(Fire, 3-370-0-E)
Investigate-space-
(Repair-3, 3-370-0-F)
Fight-fire- .
(Repair-$, 3-370-0-H) .. l
~
~ “~ . .
S~ - Repon(Repair-3, 3-370-0-)
Fight-fire- AT
Repair-3, 3-370-0- ~
(Repai 37 ) :‘, Fight-fire-
Pide (Repair-3, 3-370-0-H)
- - - -
Fight-fire- ="
(Repair-3, 3-370-0-H) ~ Damage(Fite, 3-370-0-E)

Fire-boundaries(3-370-0-E,

442. 410, 310, 338)

Figure 3: Example matching between commands and a plan. The commands C' are shown to the left, the matching
plan steps S in the plan P to the right. A solid line between a command and a step shows a correct order. A
dotted line between a command and a step shows a redundant or incorrect command. This happens to be the best
matching steps S € SS, so the plan is called the plausible plan P’.

The Critiquer algorithm is as follows:

Input: Step s, student’s solution C, plan P’
(S, K, L), matching R
Algorithm:

¢ If marked(s) then return
e mark(s)
e For each goal g; € pre(s)
- If (t,9s;,s) € L and t
Critiquer(t,C, P, R)
o If -3r = (¢, 5,n) € R then
print( “Missing command:”, s)
o If Ir = (¢,5,n) € RAn < 100 then
print( “Incorrect command:”, c)
e For each (s;,9,8) € L
— If 3r; (c,-,s,-,ni)eR/\Elrj :(Cj,s,nj)GR
A time(earliest(c;)) > time(latest(c;)) then
print(“Swapped commands:”, ¢;, ¢;)

# START then

Here, mark and marked are procedures that respec-
tively marks a step as visited and checks for such a
mark; time is a function that returns the command
time; earliest and latest are functions that return the
earliest and latest command that is the same as their
input parameter (modulo command time). The Criti-
guer first recursively critiques all steps with a causal
link to the current step. Then it critiques the current
step. The check for the Swapped Commands might
be a bit subtle: Since there is a causal link from s;
to the current step s, the time of ¢; (corresponding to
s;) should be less than the time of ¢; (corresponding

67

to s). So we critique when the time of ¢; is greater
than the time of ¢;. The functions latest and earli-
est need to be used because there can be several iden-
tical commands—cf. the two Fight-fire(Repair-3,
3-370-0-E) commands in Figure 3.

Example of Approach

To illustrate our approach, consider how a critique for
the student transcript fragment shown in Table 1 will
be produced. The Planner step will create plans PP,
examples of which are shown in Figure 2, The Generic-
Recognizer will, based on commands C in the above
transcript fragment and on correct plans $S, compute
a plausible plan P’.

How is the plausible plan computed? The START
operator (or initial state) comes from the simulator,
the END operator (or goal state) comes either from
the simulator or is computed by an as of yet unspeci-
fied algorithm. The initial state here is Damage(Fire,
3-370-0-E) and Boundaries(3-370-0-E, 442, 410,
310, 338), the goal is “Damage(Fire, 3-370-0-E).
Given this, the Planner computes plans, of which two
examples are shown in Figure 2. Based on matching
with the student’s commands, the leftmost plan in Fig-
ure 2 is chosen as shown in Figure 3.

The Plan-Critiquing algorithm will, based on the
plausible plan P’| generate this critique to the student:

1. Missing command: Set-fire-boundaries(Re-
pair-3, 3-370-E, 442, 410, 310, 338)

2. Redundant command: Fight-fire(Repair-5, 3~-
370-0-E)



3. Redundant command: Fight-fire(Repair-3, 3--
370-0-E)

How is the critique constructed? This is done by uti-
lizing the matching between the student’s commands
and the plausible plan P’ as depicted in Figure 3. In
particular, it is easy to identify missing, swapped, in-
correct, or redundant commands among the student’s
commands when compared to a plausible plan.

Conclusion and Future Work

The motivation for this research is the fact that agents,
for instance damage control assistant students, make
errors when acting. We have identified types of errors
made by damage control assistant students for the pur-
pose of recognizing and giving them feedback about
those errors. We have described a generic recognition
algorithm which can be utilized to recognize and cri-
tique erroneous student actions based on correct plans.

Areas for future work include the following. First,
the dynamic nature of scenarios needs to be addressed.
Second, while a ‘pure’ STRIPS language is used in
this work, a more expressive language will probably
be adopted. For example, there is a distinction be-
tween actions that have a causal effect (e.g. turning on
a firepump) and those that have a communicative effect
(e.g. ordering a repair party) that could be expressed
using more expressive operators. Third, more atten-
tion must be given to the interaction between planning
and plan recognition. For example, we have assumed
that a complete set of ground (variable-free) plans are
generated by the planner, and these assumptions might
need to be lifted.

Acknowledgements: This work was supported in
part by ONR Grant N00014-95-1-0749 and U.S. Army
Research Lab Grant DAAL01-96-003. Thanks to
Surya Ramachandran for clarifying discussions abeut
the DCA domain and expert critiquing systems, and
to Lisa Kaufman and the two reviewers for comments
on the manuscript.

References

Anderson, J. R.; Boyle, C. F.; T., C. A.; and Lewis,
M. W. 1990. Cognitive modeling and intelligent tu-
toring. Artificial Intelligence 42:7-49.

Anderson, J. R.; T., C. A.; Koedinger, K. R.; and
Pelletier, R. 1995. Cognitive tutors: Lessons learned.
The Journal of the Learning Sciences 4:167-207.
Charniak, E., and Goldman, R. P. 1993. A Bayesian
model of plan recognition. Artificial Intelligence
64(1):53-79.

Cormen, T. H.; Leiserson, C. H.; and Rivest, R. L.
1992. Introduction to Algorithms. Cambridge, Mas-
sachusetts: MIT Press.

Fikes, R. E., and Nilsson, N. J. 1971. STRIPS: A
new approach to the application of theorem proving

68

to problem solving. Artificial Intelligence 2(3-4):189-
208.

Genesereth, M. R. 1982. The role of plans in intelli-
gent teaching systems. In Sleeman, D., and Brown, J.,
eds., Intelligent Tutoring Systems, 137-152. London:
Academic Press.

Gertner, A., and Webber, B. 1995. Recognizing and
evaluating plans with diagnostic actions. In Proc. of
IJCAI-95 Workshop on Plan Recognition.

Hammond, K. 1986. CHEF; a model of case-based
planning. In Proc. of AAAI-86, 261-271.

Hanks, S., and Weld, D. S. 1995. A domain-
independent algorithm for plan adaption. Journal of
Artificial Intelligence Research 2:319-360.

Kautz, H. A., and Allen, J. F. 1986. Generalized plan
recognition. In Proc. of AAAI-86, 32-37.

Knuth, D. E. 1993. The Stanford GraphBase: A
Platform for Combinatorial Computing. New York:
ACM Press, 1994 edition.

Mengshoel, O. J.; Chauhan, S.; and Kim, Y. S. 1996.
Intelligent critiquing and tutoring of spatial reasoning
skills. Artificial Intelligence for Engineering Design
Analysis, and Manufacturing. Forthcoming,.

Polson, M. C., and Richardson, J. J., eds. 1988.
Foundations of Intelligent Tutoring Systems. Hills-
dale, New Jersey: Lawrence Erlbaum Associates.

Rymon, R.; Webber, B. L.; and Clarke, J. R.
1993. Progressive horizon planning — planning
exploratory-corrective behavior. IEEE Trans. on Sys-
tems, Man, and Cybernetics 23(6):1551-1560.

Sacerdoti, E. D. 1975. The nonlinear nature of plans.
In Proc. of the 4 t* IJCAL

Schmidt, C. F.; Sridharan, N. S.; and Goodson, J. L.
1978. The plan recognition problem: An intersction
of psychology and artificial intelligence. Artificial In-
telligence 11:45-83.

Silverman, B. G. 1992. Critiquing Human Error:
A Knowledge Based Human-Computer Collaboration
Apporach. Knowledge Based Systems. London, Great
Britain: Academic Proess.

Simmons, R. G. 1992. The roles of associational and
causal reasoning in problem solving. Artificial Intel-
ligence 53:159-207.

Tu, S. W.; Kahn, M. G.; Musen, M. A.; Ferguson,
J. C.; Shortliffe, E. H.; and Fagan, L. M. 1989.

Episodic skeletal-plan refinement based on temporal
data. Communications of the ACM 32(12):1439-1455.





