
An Optimal Contracting Strategy in a Digital Library

Sunju Park and Edmund H. Durfee

Artificial Intelligence Laboratory
The University of Michigan
Ann Arbor, M148109-2110

{boxenju, durfee } @eecs.umich.edu

Abstract
Agents can benefit from contracting some of their
tasks that cannot be performed by themselves or that
can be performed more efficiently by other agents.
Developing an agent’s contracting strategy in the
University of Michigan Digital Library (UMDL),
however, is not easy for the following reasons. The
UMDL consists of self-interested agents who will
perform a task of another agent’s only when doing it
is their own interests. In addition, multiple contracts
take place concurrently such that other contracts
currently in the system may have an impact on the
success of one’s own contract. Therefore, an agent
who has a task (contractor) needs to model what the
other self-interested agents think and will do, and it
also needs to consider the influence of other contracts
on its contract.

In this paper, we define the contractor’s and the
contractee’s decision problems in the UMDL
contracting situations, and present a contracting
strategy by which a contractor can determine an
optimal payment to offer. The contractor’s problem is
to find a payment that maximizes its expected utility,
and it finds such a payment by modeling the
contracting process stochastically using a Markov
process. The Markov-process model is built based on
the information the contractor has about the potential
contractees and about the other contracts in the
system. Our early results show that the contractor
receives a higher utility when thinking about the
potential contractees and the other contracts.

Introduction

As agent technology advances, we encounter many systems
in which multiple agents interact with one another. As
noted in (Sandholm & Lesser 1995a), the importance
automated contracts in such multiagent systems is likely to
increase where the agents representing small enterprises
can form short term contracts to be able to respond to
larger tasks than they can individually do.

One example of such federated multiagent systems is the
University of Michigan Digital Library (UMDL), a large-
scale multiagent system for information services (Atkins et

al. 1996). The agents in the UMDL coordinate their
activities to accomplish a variety of high-valued
information services, such as delivering a document to a
user, processing a query, filtering information, and so on.

Instead of using central planning, we advocate an open
architecture, where users and information collections will
choose to be part of the system, and where the population
of value-added information-service providers will evolve
based on market forces. In terms of multiagent contracts,
the open architecture adopted in the UMDL has the
following implications.

¯ Self-interested agents:
Compared to cooperative systems where the goals of
agents are aligned, the agents in the UMDL are purely self-
interested. The only reason for an agent to be in the UMDL
system is to satisfy its needs: the agent representing a user
wants to receive the needed information; the agent
representing an information collection wants to publish and
disseminate the information, possibly with compensation;
and the agent representing an information-service provider
desires to provide its specialized service in exchange for
compensation. In short, the agents in the UMDL do not
share a common global objective; their actions are guided
by their self-interests.

¯ Provision of rewards:
A self-interested agent who has tasks (i.e., contractor) can
benefit from contracting some of its tasks that cannot be
performed by itself or that can be performed more
efficiently by other agents. However, since the agent who
will perform the task (i.e., contractee) is also self-
interested, the contractor cannot force the contractee to do
its task without some incentives. Promising rewards is one
way to convince a self-interested agent to perform a task
that is not amongst its tasks. Accordingly, the UMDL
provides a monetary system where performing a task is
rewarded by some payment which is mutually decided
upon by the contractor and the contractee.
¯ Retraction from the agreed-upon contracts:
Multiple contracts will take place concurrently in the
UMDL, and one contract may influence the success of
another. For example, a contractee with a certain capability
constraint may retract from its old contract (while paying
retraction penalty) to accept a new, more lucrative contract.
So, when making a contract, a contractor needs to consider

69

From: AAAI Technical Report WS-96-02. Compilation copyright © 1996, AAAI (www.aaai.org). All rights reserved.

the other contracts in the system which may impact the
success of its task.

Consequently, an agent’s contracting strategy in the
UMDL will be more complicated than that for a
cooperative environment or that for a single contract.
When making a decision in the contracting process, the
agent cannot depend on any assumption about the other
agents (since they are self-interested and it has no control
over them): it needs to model what the other self-interested
agents think and will do. In addition, it needs to consider
the influence of other contracts on its contract (through
retraction). Moreover, the information about other agents
and other contracts may be known to the contractor only
probabilistically.

In this paper, we are asking the following two questions:
(1) what are the contractor’s and the contractee’s decision
problems in the contracting situations of the UMDL; and
(2) how can the contractor make an optimal decision.

The rest of the paper consists of the following. First, we
review related work, and define the contractor’s and the
contractee’s decision problems. Then, we develop the
optimal contracting strategy of the contractor. Due to space
limitations, we focus on the optimal contracting strategy of
the contractor, while skipping that of the contractee in this
paper. In addition, we show some early experimental
results and summarize the work. The appendix explains the
use of Markov process in detail.

Related Work
The strategies of self-interested, rational agents has been a
central issue in noncooperative game theory (Kreps 1990)
(Rubinstein 1982). In general, game theorists analyze
strategic interaction between agents, finding the
equilibrium strategies (based on notions, such as Nash,
Perfect, or Bayesian equilibria). Self-interested agent’s
strategies have been studied in DAI as well. Rosenschein,
for example, proposes several agent strategies and
protocols based on game theory (Rosenschein & Zlotkin
1994). In RMM (Gmytrasiewicz & Durfee 1993), an agent
models the other agents in a recursive manner to evaluate
the expected utility attached to potential actions. Kraus
proposes a self-interested agent’s contracting strategy
based on contingency contracts (Kraus 1994).

At the risk of oversimplifying, we say that the above
research in general focuses on a single-task contracting
situation of self-interested agents. The UMDL, however,
consists of multiple contracts, which demands a contracting
strategy that explicitly reasons about concurrent contracts
and possible retractions. Unfortunately, there has been little
research on self-interested agents’ contracting strategies
under multiple, concurrent contracts. Sen (Sen 1993) has
studied multiple contracts and their interdependencies, but
his research primarily deals with cooperative domains and
lacks explicit notions of payments.

Sandholm proposes self-interested agents’ contracting
strategies under multiple contracts (Sandholm 1993).
Compared to our approach, however, the contractor

announces the true cost of its task as the payment, not
capitalizing on the opponents’ costs or the impact of the
other tasks competing in the system. In addition, retraction
is not allowed. Recently, he proposes a leveled-
commitment protocol that allows self-interested agents to
retract from a contract by paying a penalty (Sandholm
Lesser 1995b), but no agent’s strategy under such
protocol is developed yet.

In our work, both the contractor and the contractee are
able to explicitly consider the opponents, the concurrent
contracts, and the possibility of retraction when making
decisions in the contracting process.

The Decision Problem
We assume the agents in the UMDL use a simple
contracting protocol called Take-It-or-Leave-it (TILI).
Under the TILI protocol, the contractor announces the task
and its payment to potential contractees, and the potential
contractees either accept or reject the offer (no
counteroffers). Then, the contractor awards the task to one
of the contractees who has accepted the offer. The
contractee may want to retract from the contracted task
while paying the retraction penalty. Retraction happens, for
example, when the contractee receives a more attractive
task that cannot be done along with the contractor’s task.

Before continuing, let’s consider an example from the
UMDL where a Task Planning Agent (TPA) desires
receive a monitoring service for a certain period of time
from a Remora Agent (RA)I. Informally, the decision
problems of the TPA and the RA are as follows. The TPA
(contractor) needs to figure out what payment to offer and
to whom in order to have the task done. The RA
(eontractee), on the other hand, needs to decide whether
accept the offer or not. In addition, it may want to consider
whether to retract some of the currently contracted tasks in
favor of a better deal.

Contractor’s Decision Problem

In principle, the contractor’s decision parameters can be
diverse, such as the payment, the retraction penalty, to how
many agents to send the offer, and so on. In our initial
development, however, we assume that the contractor is
only interested in the value of the payment (while
broadcasting the offer to all the available contractees and
fixing the retraction penalty).

Then, the contractor’s decision problem is to find the
payment (p) that maximizes its expected utility (i.e.,
maximizep u(p)). If the contractor is primarily interested in
the payoff of a contract, the expected utility of the
contractor for the payment, p, is defined as follows.

u(p) = Ps(p)x U(Payoffs(p)) x U(Payoff ~(p)),

1Both the TPA and the RA are service-providing agents (called
mediators) in the UMDL. Typically, the TPA processes a task
from a user, and the RA monitors a UMDL event (e.g., the change
of the status of an agent) (Atkins et al. 1996).

7O

where Ps/p denote the probability of Success (S) and Failure
(F) of a contract, and Payoffs/r denote the payoff of S and
F, respectively, given p. Note that Payoffs/e is a more-is-
better function since in general the contractor will prefer a
higher payoff.

The contractor’s payoff of a successful contract (Payoffs)
is defined as its value of the task (V) minus the payment
(p) to the contractee and minus the total communication
costs (CC)2. In addition, any retraction penalties (A) paid
by the contractees are added3. If the contract fails, the
contractor may be worse off because of the communication
cost. The payoff of failure (Payoffe) is minus the total
communication costs plus any retraction penalties accrued,
assuming the value of failure is 0. If values, payments, and
costs have the same units, the payoffs are defined as
follows.

Payoffs(p) = V- p- CCs +
PayOffF(p) =- CCr AF

If the payment is higher, the probability of success (Ps)
would increase (since it is more likely to be accepted by
more potential contractees), but the payoff of success
(Payoffs) would decrease. A higher payment also implies
lower probability of retraction (and thus higher probability
of success), since the contractee will be less likely to
retract a contract with higher payment.

In addition to the payment, many other factors--such as
the contractees’ costs of doing the task, the payments of the
other contracts, and so on--influence the values of Psm and
Payoffs/r. To compute Ps/p and Payoffs/r, therefore, the
contractor needs to model the potential contractees and the
other contracts.

Contractee’s Decision Problem
As in the case of the contractor, the contractee in principle
needs to model the other agents (i.e., the contractor(s)
the other competing contractees). For example, the
contractee may model what the contractor thinks and try to
influence the contractor: the contractee may reject the task
even though it gives a profit, trying to convince the
contractor that its cost of doing the task is higher and thus
making the contractor offer a higher payment in the next
contracting process4. At present, however, we consider
each contracting process separately such that the
contractor’s information about the contractees is not
changing (i.e., static), and therefore the contractee does not
need to model the contractor.

On the other hand, the contractee must be able to model
the other agents competing for the same task to compute

z The communication cost represents the total overhead of the

contracting process incurred by the contractor.
3 In our setting, retraction from the contractor side will not happen

since its payoff will be the same no matter who it picks.
4 This is similar to a dynamic game of incomplete information

where the contractor tries to obtain information about the
contractee, and the contractee tries to influence the contractor’s
information to its favor.

the probability of getting awarded (which is used in
computing the expected payoff).

Under the TILI protocol, the contraetee makes two
decisions. First, when the task(s) and their payments are
announced, it needs to decide whether to accept some of
the offers. Second, if contracted, it needs to decide whether
to retract some of its contracted tasks. Since our primary
focus is on the optimal contracting strategy of the
contractor, we do not discuss the detailed way of
computing the contractee’s payoffs in this paper. Interested
readers may refer to (Park, Durfee, & Birmingham 1996).

First, when the tasks are being announced, the contraetee
needs to find a subset of announced tasks it will accept--
the subset of announced tasks which maximizes its
expected payoff. For example, let’s suppose the RA who
has Tj receives an announcement of Tz. And suppose the
RA can perform at most one task at a time. If it accepts Tz
and gets awarded T2, then it needs to retract one of/’1 and
T2. Therefore, the RA will accept the offer only if the
payoff of accepting /’2 even with the retraction of/’1 is
higher than not accepting it.

Second, when the contractee has more tasks than it can
do, it may need to retract some of its tasks until it satisfies
the following total capability (TC) constraint.

z~ (c/~) ~ TC,
where k ~ {contracted tasks that are not retracted}, Ck is
the cost of doing the task k, ~ is the time needed to
complete the task k, and TC is the total capability (the
maximum cost that the contractee can take on per each
time unit). The total capability constraint says that the sum
of all the costs spent per each time unit should be less than
the maximum cost that the contractee can spend per time
unit. It should be noted that all tasks are assumed to be
persistent (that is, a task should be started from the time it
is contracted and be persistent until its completion). The
RA’s monitoring service is an example of such persistent
tasks.

The contractee’s decision at the contracted state is
therefore to find a subset of its contracted tasks with the
maximum payoff while satisfying the total capability
constraint. That is,

find K with max(PayofflK)) and ~,k (Ce/~) -~
Then, the contractee will retract the rest of the contracted
tasks.

Contractor’s Optimal Contracting Strategy
In this section, we propose an optimal contracting strategy
for the contractor. We have developed a four-step
contracting strategy for the contractor to compute the
unknown parameters and therefore to find the optimal
payment.
(1) The contractor models the contracting process using
Markov chains (MC).
(2) It computes the transition probabilities between the
states.

71

(3) From the MC model, it computes the probabilities and
payoffs of S and F.
(4) Using the probabilities and payoffs of S and F, it finds
the payment that maximizes its expected utility.

Step 1: Modeling the contracting process

The contractor can model various contracting processes
using absorbing Markov chains with a set of transient
states and two absorbing states (S and F). An example of
contracting process model is shown in Figure 1.

Figure 1: An example of a contracting-process model
In Figure 1, state 0 is the initial state. The contracting

process goes to state 1 when the contractor announces the
task and its payment to the potential contractees. State 2 is
the contracted state where the contractor has awarded the
task to one of those who accepted its offer. State 3 and
state 4 are the success and the failure state, respectively.

From state 0, the process goes to states 1 by default.
From state 1, the process goes to state 2 as long as at least
one agent accepts the offer. If no agent accepts the offer,
the process goes to state 4. The process may go back to the
initial state (state 0) if there are some agent(s) who
perform the task but are busy at the moment. Then, from
state 0, the contractor will try to announce the task again
with the same payment. The process goes from state 2 to
state 0, when the contractee has more tasks than it can
perform (i.e., its capability is exceeded) and retracts the
contractor’s task. When the task is successfully completed,
the transition from state 2 to state 3 happens.

Step 2: Computing the transition probabilities

The contractor needs to define the transition probabilities
between the MC states. The transition probability from
state i to state j, Pij, is a function of the payment (p), the
retraction penalty (S), the information about the
contractees’ costs of doing the task and their capabilities,
and the number of other tasks and their payments.

As an example, let’s compute the transition probabilities
of Figure 1, assuming only a single contract is going on in
the system (i.e., no other task is present). Pol is 1 by
default. Since there is no other task, no agent will be busy
at the announced state (yielding P~o = 0), and the task will
always be completed once the contract is made (i.e., 1>2o = 0
and P2s = 1). If there is at least one agent who accepts the
contractor’s offer, the contract is made (i.e., the transition
from state 1 to state 2 happens). Letfi(c) be the probability
density function (PDF) of agent i’s cost of doing the task.
The contractor can compute the transition probabilities of

P14 and P~2 as follows.

P(Aj) = Probability that agent i accepts the payment p
(i.e., agent i’s cost of doing the task is less than p)

= ~f(c)ac.

P14 = Probability that no agent accepts the offer (no
agents’ cost is less than p)

= (1-P(AI)) × (1-P(A2)) × ... x (1-P(A")) =

P/2 = Probability that at least one agent accepts the offer
(at least one agent’s cost is less than p)
= 1 -[’14-1>1o
= 1 - P14.

Step 3: Computing the probabilities and payoffs

Having the model of the contracting process and its
transition probabilities, the contractor can compute the
unknown parameters of the utility function (i.e., the
probabilities and payoffs of S and F) using the method we
have developed. The detailed explanation can be found in
the Appendix.

Step 4: Finding the optimal payment

When the probabilities and payoffs of S and F are ready,
finding the best payment from the utility function is an
optimization problem. At present, we use a simple
generate-and-test: we generate the utility values for various
p, and choose p with the highest utility. We are
investigating an appropriate optimization technique that
can be used for Step 4.

Experiment

In this section, we report some early experimental results
of the proposed contracting strategy. The experimental
setting is as follows. There are two tasks in the system:/’1
(the contractor’s task) and 2 (another t ask being
contracted), each of which takes one time unit to complete.
The contractor values/’1 as 20 (i.e., V = 20), and it knows
the payment of Tz is 10. (It does not have to know about
the other contractor’s value of/’2). The retraction penalty of
both tasks is 2.

There are three potential contractees (42, A2, A3). The
contractor has imperfect models of them, especially their
costs which it represents using probability density
functions (PDFs). For simplicity, we assume that the total
capability of each agent is known to the contractor: let TC
ofA1, a2, As be 16, 18, and 20, respectively. The PDFs of
agent i’s cost of doing taskj (ff(cj)) as foll ows.

ftt(c,)={} 0 5"~ct<ll,
{{0 5<c2<11otherwise f ~ (c2)

otherwise
{~0 6<c, <12, {~r 0 6<c~ <12

fl 2 (G) = otherwise f22 (c2) = otherwise
f3(cl)={~r 0 7<G<13,

{~0 7<c2<13"otherwise f2~ (c2)
otherwise

If every state transition takes one time unit, the contractor
can model the two task contracts as in Figure 2. Note that

72

state D (done) is used to represent both S and F states of T2,
because the contractor does not care about the result of T2,
and because it is generally a good idea to keep the number
of states small.

Figure 2: The MC model of the two-task contract with
deterministic unit-time state transition

Then, the contractor can compute the transition
probabilities of MC states (using the information about the
contractees), and the thus utility values. The detailed
explanation can be found in (Park, Durfee & Birmingham
1996).

Figure 3 shows the risk-neutral contractor’s utility value
with different payments of T2 (P2), assuming the initial
state is state 14. Depending on the payment of the other
task, the contractor’s optimal payment would be different.
The best payment of T1 would be 8.9 when if2 is 10,
whereas the best payment would be 8.5 when P2 is 14.

...

’

~

" ~ Solid TWhma the p.ynaent of T is 10

1 Dashed: When th~ payment of T~ Im 1

............. i!i~.~.-iiJ’t
N!"~’-ii

J
i i i i-..

.............. i !!"-i f I
............ i1~’,~.

]~__---- ~’ !i~o ~ ".~,
Payment of T

Figure 3: The utility values of the contractor with different
payments of the other task

In summary, by modeling the factors that influence the
optimal payment, such as the contractees’ costs and total
capabilities, the communication costs, and the payment of
the other task, the contractor is able to find the optimal
payment to offer. In fact, it chooses different payments
based on the payment of the other task, the communication
costs, and different information about the contractee’s
costs.

Discussion
This paper has defined the contractor’s and the contractee’s
decision problems in contracting situations in the UMDL,
and proposed an optimal strategy for the contractor. The
utility-maximizing contractor models the future contracting
process using Markov chains, and computes the transition
probabilities between the states by modeling the other
agents and the other contracts. Then, using the MC model,
the contractor derives the information needed for
computing the utility value and finds an optimal payment.

The contractor’s contracting strategy provides a
methodology that a utility-maximizing agent can use to
find an optimal payment to offer, given (potentially
uncertain) knowledge about the possible contractees and
the other contracts that have been formed, are being
formed, or will be formed among agents. The strategy
explicitly takes into account the self-interested contraetees
and multiple contracts in the system, both of which are
primary characteristics of the UMDL.

We have implemented the contractor’s contracting
strategy using Maflab and performed several analyses for
the two-task cases. Early results show that the contractor
receives higher payoffs when considering the other
contracts in the system and modeling the contractees’
decision making.

We are currently developing various MC models
depending on the number of tasks being contracted and the
amount of information a contractor has. In addition, we
will integrate the stand-alone contracting strategy into the
UMDL agents.

Acknowledgments
This research has been funded in part by the joint
NSF/ARPA/NASA Digital Libraries Initiative under
CELIA IRI-9411287.

Appendix
In this appendix, we explain the method of computing the
probabilities and payoffs of S and F from the absorbing
Markov chains.

Before continuing, let’s define the Markov chain.
Consider a stochastic process {X~, n = 0, 1, 2 } that takes
a finite number of possible values. If X~ = i, then the
process is said to be in state i at time n. The stochastic
process X~ is called a Markov chain if the conditional
distribution of X~+1 depends only on X~, the present state,
i.e., if

P(Xn+l = j l Xn = i, Xn_1 =in_1 Xl = il, Xo = io}
= P{Xn+1 = j lX. = i} = PO" "

A state i is transient iff starting from state i, the process
may not eventually return to this state. A state i is
absorbing iffP, is 1 (and Psi is 0 for i ~j). A chain, all
whose non-transient states are absorbing, is called an
absorbing Markov chain. Figure 1 is an absorbing Markov
chain, where I, A, C are transient states, and S and F are
absorbing states. From now on, we let T be the set of
transient states and let Tc be the set of absorbing states.

The transition probability matrix, P, denotes the matrix
of transition probabilities P;j. Figure 4-(a) shows the
canonical representation of an (O-state MC consisting of
(s) transient states and (r-s) absorbing states: ! is an (r-
s)x(r-s) identity matrix (each absorbing state transitions to
itself); O consists entirely of O’s (by definition,
absorbing state never transitions to a transient state); Q is
an (s×s) submatrix which concerns the transition only

73

among the transient states; and R is an sx(r-s) matrix which
concerns the transition from transient to absorbing states.
Figure 4-(b) shows the canonical representation of the
transition probability matrix of Figure 1 when a single
contract is going on.

4 3 2 1 0

I "a ,r, 0100q
I° 1 1° %01

P~ 2 0 1 0 0 0, ,0 ,,o
o 0 1

(a) Canonical representation of (b) Canonical representation ot Figure

Figure 4: The canonical form of transition probability matrix
We can use the transition probability matrix to compute

the expected number of visits to each MC state, as follows.
From the transition probability matrix of any absorbing
MC, the inverse of (I - Q) always exists, and

(i_ Q)-I = I +Q+Q2 + ~Q~.
k=O

In Markov process theory (Bhat 1972), the new matrix (I

Q).1 is called the fundamental matrix, M (i.e., M = [/Z01
=

(I- Q).I).
Let N;j be the total number of times that the process

visits transient statej from state i. Let Nt~ be defined as 1 if
the process is in state j after k steps from state/, and 0
otherwise. Then, the average number of visits to state j
from state i before entering any absorbing state is E[No].

E[No] = E[~.N~]

= ~0{(1- P~).0 +P~.

where P~ is the k-step transition probability

=]~ Q* since i, j are transient states
kffi0

= (I - Q)"
=M.

Therefore, the (i,j)-th element of the fundamental matrix,

#0, is the average number of visits to transient state j
starting from state i before the process enters any absorbing
state. The fundamental matrix is very important, since it is
used to compute the needed information (i.e., probabilities
and payoffs of S and F) in the following.

A.1 Probabilities of S and F

Let f/j be the probability that the process starting in
transient state i ends up in absorbing statej. If the starting
state is state 0 in Figure 1, for example, the probabilities of
reaching S and F are f0a andfo4, respectively.

Starting from state i, the process enters absorbing state j
in one or more steps. If the transition happens on a single
step, the probability f0 is Pij. Otherwise, the process may
move either to another absorbing state (in which case it is
impossible to reach j), or to a transient state k. In the latter
case, we havef~/. Hence, f0 = Po + Z’k’TPikf~i’ which can be
written in matrix form as

F=R +QF,
and thus

F = (I-Q)’~R
F=III,~II=MR i~T; j~Tc.

Therefore, the probabilities of S and F of a contract can be
computed using the fundamental matrix (M) and the
submatrix (R) of the original transition probability matrix.

A.2 Payoffs of S and F

As defined previously, the payoff of S is (V - p - CCs
As), and the payoff of F is (-CCr + AF). Here, we present
the method of computing the total communication cost and
the total retraction penalty (-CC + A) of S and F, given p.
Let’s define the reward matrix/2, where w0 represents a
reward associated with each transition i ---> j. The reward of
each transition can be either the minus communication cost
(.-.cco.) or the minus communication cost plus the retraction
penalty (-cco + 5).

For the time being, let’s assume that we can compute
I.to/s) and p~S), where I.to/s) is the number of visits to state i
starting from initial state 0 before the process enters S; and
pjS~ is the conditional transition probability when the
process ends up in S.

Then, ~_,j,~r.rc~Pi~~ .(00 is the average reward of the

one-step state transition from state i when the process ends
up in S. Multiplying it by lZo/s~ (the number of visits to state
i starting from 0 until it goes to S), we compute the one-
step reward accrued from state i when the process ends up
in S r,, es~Z p es~ ,,, ~ Adding this value for every state i, we
compute the total reward of S. That is, the total reward of S
(-CCs + As) can be computed as follows.

- f .,,,., J.c~cJ°v e,y,.% l.-CCs +as = ,~r[.O,

The reward of F (-CCF + At,) can be computed in a similar
way.

COp AF-- all.Lot " ~ P~ "O)ql"-- -b -- (1~) F)

iGi k jGlr, r~-} J

Now, how do we compute lZo/s) and P0m (and po/P) and
pJF))? From the original matrix P, we need to create two
new Markov chains, each of which has one absorbing state,
S and F, respectively.

The new transition probabilities, pjS) are the conditional
probability that the process goes to state j from state i when
the process ends up in S. Let ~ be the statement "the
original MC ends up in state S". Then,

P(Os) =P(l--> jl¢)= P((i~ j)^¢) P(¢li~ j).P(i~ j)_ "P .

e(~) P(~)

The new MC with the single absorbing state S, p(s), is
defined as follows.

0o]
where Res’ is a column vector with R’s’ = {~}, and Q(S, is

the matrix with Q"={P~"I={~s}"

74

From piSS, the contractor can compute the new
fundamental matrix hits), and therefore, ~toits). Of course,
Po<e) and #o~<r) are computed in a similar way.

References

Atkins, D. E. et al. 1996. Toward Inquiry-Based Education
Through Interacting Software Agents. To appear in IEEE
Computer. see http:llwww.computer.orglpubslcomputerl
dli/r50069/r50069.htm.

Bhat, U. N. 1972. Elements of Applied Stochastic
Processes. John Wiley & Sons Inc.

Gmytrasiewicz, P. J., and Durfee, E. H. 1993. Reasoning
about Other Agents: Philosophy, Theory, and
Implementation. In Proceedings of the International
Workshop on Distributed Artificial Intelligence, Hidden
Valley, PA.

Kraus, S. 1994. Contracting Tasks in Multi-Agent
Environments. Technical Report, UMIACS-TR-94-44,
Univ. of Maryland.

Kreps, D. M. 1990. Game Theory and Economic Modeling.
Oxford University Press.

Park, S., Durfee, E. H., and Birmingham, W. P. 1996. Use
of Absorbing Markov Chains to Design a Multiagent
Contracting Strategy. Forthcoming. see
http://ai.eecs .umich.edu/people/boxenj u/absorbing-mc.ps

Rosenschein, J. S., and Zlotkin, G. 1994. Rules of
Encounter: Designing Conventions for Automated
Negotiation among Computers. The MIT Press.

Rubinstein, A. 1982. Perfect Equilibrium in a Bargaining
Model. Econometrica, 50:97-109.
Sandholm, T. 1993. An Implementation of the Contract
Net Protocol Based on Marginal Cost Calculations. In
Proceedings of the AAAI, Washington, DC

Sandholm, T., and Lesser, V. 1995a. Issues in Automated
Negotiation and Electronic Commerce: Extending the
Contract Net Framework. In Proceedings of the ICMAS.

Sandholm, T., and Lesser, V. R. 1995b. Advantages of a
Leveled Commitment Contracting Protocol. Technical
Report 95-72, University of Massachusetts.

Sen, S. 1993. Predicting Tradeoffs in Contract-Based
Distributed Scheduling. Ph.D. Thesis, U of Michigan.

75

