
DLMS: An Evaluation of KL-ONE in the
Automobile Industry

Nestor Rychtyekyj
Ford Motor Company

Manufacturing Quality Business Systems
P.O. Box 1586, Room B154
Dearborn MI, 48121
usfmc53B @ibmmail.com

Abstract

Ford Motor Company’s Direct Labor
Management System (DLMS) utilizes 
knowledge representation scheme based on the
KL-ONE family of languages to represent the
world of automobile vehicle assembly
knowledge. DLMS is an implemented system
that has been utilized by Ford personnel since
1991 and it remains an integral part of Ford’s
worldwide manufacturing strategy. This paper
will describe the rationale for the use of KL-
ONE, provide an overview of how KL-ONE
was implemented into DLMS, discuss the
advantages and disadvantages of using a
knowledge representation scheme such as KL-
ONE in a production environment and present
an evaluation of how knowledge representation
and reasoning systems can be successfully
utilized in industry.

INTRODUCTION

Ford Motor Company’s Direct Labor Management
System (DLMS) is the knowledge-based subsystem of 
complex multiphase manufacturing process planning
system. Since its original deployment in 1991, DLMS
has been utilized by hundreds of users throughout
Ford’s automobile and truck assembly plants in North
America. Currently DLMS is being expanded to Ford’s
assembly plants around the world. The knowledge that
is used to drive the manufacturing assembly process in

DLMS is stored in a KL-ONE knowledge
representation scheme.

This paper will discuss the long-term implications of
utilizing KL-ONE in a dynamic environment such as
automobile assembly planning. Issues such as
knowledge base validation and verification,
maintenance and adaptability to changing market
conditions will also be discussed.

DLMS OVERVIEW

The Direct Labor Management System (DLMS) is 
implemented system utilized by Ford Motor Company’s
Vehicle Operations division to manage the use of labor
on the assembly lines throughout Ford’s vehicle
assembly plants. DLMS was designed to improve the
assembly process planning activity at Ford by achieving
standardization within the vehicle process build
description and to provide a tool for accurately
estimating the labor time required to perform the actual
vehicle assembly. In addition, DLMS provides the
framework for allocating the required work among
various operators at the plant and builds a foundation
for automated machine translation of the process
descriptions into foreign languages.

The standard process planning document known as a
process sheet is the primary vehicle for conveying the
assembly information from the initial process planning
activity to the assembly plant. A process sheet contains
the detailed instructions needed to build a portion of a
vehicle. A single vehicle may require thousands of
process sheets to describe its assembly. The process
sheet is written by an engineer utilizing a restricted

- 60 -

From: AAAI Technical Report WS-96-05. Compilation copyright © 1996, AAAI (www.aaai.org). All rights reserved. 



subset of English known as SLANG (Standard
LANGuage). Standard Language allows an engineer to
write clear and concise assembly instructions that are
machine readable.

Figure 1 shows a portion of a process sheet written in
Standard Language. This process sheet is written by an
engineer at the Vehicle Operations General Office; it is
then sent to the DLMS system to be "validated" before
it can be released to the assembly plants. Validation
includes the following: checking the process sheet for
errors, generating the sequence of steps that a worker at
the assembly plant must perform in order to accomplish
this task and calculating the length of time that this task
will require. The DLMS system interprets these
instructions and generates a list of detailed actions,
known as allocatable dements, that are required to
implement these instructions at the assembly plant level.
These allocatable elements are associated with
MODAPTS (MODular Arrangement of Predetermined
Time Standards) codes that are used to calculate the
time required to perform these actions.

MODAPTS codes are utilized as a means of measuring
the body movements that are required to perform a
physical action and have been accepted as a valid work
measurement system around the world. [IES 88]. For
example the MODAPTS code for moving a small object
with only a hand is M2; utilizing the arm gives a code
of M3. The MODAPTS codes are then combined to
describe a entire sequence of actions. MODAPTS
codes are then converted into an equivalent time, which
is needed to perform that action. Figure 2 shows the
output generated by the DLMS system including a
description of each action with its associated
MODAPTS code.

The work instructions generated by DLMS are known
as allocatable elements. These allocatable elements are
then used by the engineering personnel at the assembly
plant to allocate the required work among the available
personnel. DLMS is a powerful tool because it
provides timely information about the amount of direct
labor that is required to assemble each vehicle, as well
as pointing out inefficiencies in the assembly process.
A more complete description of the DLMS system can
be found in [O’Brien et al. 89].

Process Sheet Written in Standard Language

TITLE: ASSEMBLE IMMERSION HEATER TO ENGINE

I0 OBTAIN ENGINE BLOCK HEATER ASSEMBLY
FROM STOCK
20 LOOSEN HEATER ASSEMBLY TURNSCREW USING
POWER TOOL
30 APPLY GREASE TO RUBBER O-RING AND CORE
OPENING
40 INSERT HEATER ASSEMBLY INTO RIGHT REAR
CORE PLUG HOSE
50 ALIGN SCREW HEAD TO TOP OF HEATER
60 SEAT ASSEMBLYUNTIL ENGINE BLOCK AND
ASSEMBLY ARE FLUSH
70 SECURE SCREW USING POWER TOOL TO TIGHTEN
HEATER ASSEMBLY
TOOL 20 1 P AAPTCA TSEQ RT ANGLE NUTRUNNER
TOOL 30 1 C COMM TSEQ GREASE BRUSH

Figure 1.

Resulting Work Instructions Generated by DLMS

LOOSEN HEATER ASSEMBLY TURNSCREW USING
POWER TOOL
GRASP POWER TOOL (RT ANGLE NUTRUNNER)
<01M4G1>
POSITION POWER TOOL (RT ANGLE NUTRUNNER)
<01M4P2>
ACTIVATE POWER TOOL (RT ANGLE NUTRUNNER)
<01MIP0>
REMOVE POWER TOOL {RT ANGLE NUTRUNNER)
<01M4P0>
RELEASE POWER TOOL (RT ANGLE NUTRUNNER)
<01M4P0>

Figure 2.

The DLMS system consists of five main subsystems:
parser, analyzer, simulator, knowledge base manager,
and the error checker. The input into DLMS is a
process sheet; it is initially parsed to break down the
sentence into its lexical components which includes the
verb, subject, modifiers, prepositional phrases and other
parts of speech. Since Standard Language is a restricted
subset of English, the parser has a very high rate of
success in properly parsing the input from the process
sheets. The parser utilizes the Augmented Transition
Network (ATN) method of parsing [Charniak, et. al 87].
Any process element that is not parsed successfully will
then be flagged by one of the error rules that will
(hopefully) suggest to the user how to correct this
element. The analyzer will then use the components of
the parsed element to search the knowledge base (or
taxonomy) for relevant information describing that item.

- 61 -



For example, the input element contained the term
"HAMMER". This term will then be searched for in the
taxonomy; when it is found the system will then learn
all of the attributes that "HAMMER" has: (it is a Tool,
its size is medium, it can be used with one hand, etc.)
The system will perform this analysis on all of the
components of the input element in order to select what
work instructions are required.

The work instructions are then found in the taxonomy
based on all of the available input and are passed on to
the simulator. The simulator will use the taxonomy to
generate the sequence of instructions and MODAPTS
codes that will describe the input element. These work
instructions will then be sent back to the user. The
knowledge base manager is used to maintain the
knowledge base; this maintenance may be performed
by the user community or by the system developers.

All of the associated knowledge about Standard
Language, tools, parts and everything else associated
with the automobile assembly process is contained in
the DLMS knowledge base or taxonomy. This
knowledge base structure is derived from the KL-ONE
family of semantic network structures and is the integral
component in the success of DLMS. DLMS also
contains a rulebase of over 350 rules that are used to
drive the validation process and perform error-checking
on the Standard Language input. DLMS was
implemented in Common LISP and ART (Automating
Reasoning Tool from Brightware Corporation) on the
Texas Instrument Explorer platform. It is currently
being ported to the Hewlett Packard UNIX platform.
Figure 3 describes the current DLMS architecture.

USER PC/ MPPS
Workstation SYSTEM

KNOWLEDGE
BASE MANAGER ERROR

SUBSYSTEM

PARSER

ANALYZER

SIMULATOR

Figure 3: Current DLMS System Architecture

- 62 -



KL-ONE OVERVIEW

The KL-ONE knowledge representation system
[Brachman, Schmolze 85] was first developed at Bolt,
Baranek and Newman in the late 1970’s as an outgrowth
of semantic net formalisms. KL-ONE was selected for
use on the DLMS project because of its adaptability for
many diverse applications as well as the power of the
KL-ONE classification algorithm. KL-ONE is derived
from research done on semantic networks.

The principal unit of information is the "concept". Each
concept has a set of components or attributes that is true
for each member of the set denoted by that concept.
The main form of relation between concepts is called
"subsumption". Subsumption is the property by which
concept A subsumes concept B if, and only if, the set
denoted by concept A includes the set denoted by
concept B. The KL-ONE knowledge base as used in
DLMS can be described as a network of concepts with
the general concepts being closer to the root of the tree
and the more specific concepts being the leaves of the
tree. A concept in a KL-ONE knowledge base inherits
attributes from the concepts that subsume it. The power
of the KL-ONE system lies in the classification scheme.
The system will place a new concept into its appropriate
place in the taxonomy by utilizing the subsumption
relation on the concept’s attributes. A much more
detailed description of the KL-ONE classification
scheme can be found in [Shmolze, Lipkis 81].

KL-ONE USAGE BACKGROUND

The requirement for a system to automate process
planning in automobile assembly at Ford Motor
Company was very evident since the early 1980’s.
Previously, process sheets were written in free-form
English and then sent to the assembly plants for
implementation. The quality and correctness of process
sheets differed greatly based upon which engineer had
written a particular sheet. There was no standardization
with similar process sheets and industrial engineers at
the assembly plants would be forced to implement work
instructions based on differing process sheets. The
process sheets could not describe the amount of labor
required and the assembly plants were not able to
accurately plan for labor requirements. Work usage
instructions were written manually and the time
required to accomplish a particular job would have to
be measured manually.

These manual "stopwatch" time studies suffered from
several major disadvantages. A time study consisted of

an industrial engineer watching an assembly line worker
doing their job and measuring how long each job would
take. These measurements would vary from worker to
worker, so that multiple time studies were required for
each particular job. Since there may be hundreds or
even thousands of jobs in an assembly plant, the time
studies were very expensive and time-consuming. Time
studies also have a very adverse effect on worker
morale and are a source of resentment among the
assembly personnel.
Since labor is a very significant portion of the cost of
producing an automobile, there was a very strong
incentive to develop a system that could both
standardize the process sheet and create a tool for
automatically generating work instructions and times
from these process sheets. The first attempts to create
DLMS were done utilizing standard third generation
programming languages (COBOL) and existing IBM
mainframe databases (IMS). The sheer complexity 
the knowledge required to accurately generate reliable
work instructions could not be represented in either a
database or in a program. A database could easily store
the amount of data required, but the relationships
between the various components in the database could
not be adequately represented. A program could be
written that could explicitly list all of the inputs and
desired outputs, but this program would quickly become
obsolete and be impossible to maintain.

At this time expert systems and Artificial Intelligence
were beginning to be accepted into industry, so Ford
contracted Inference Corp. to develop a prototype of
the DLMS system. A rule-base approach was also
considered, but the complexity and future
maintainability of a system containing explicit
knowledge about a dynamic domain such as automobile
assembly ruled this approach out. A requirement for the
DLMS knowledge base included the ability to make
frequent and complex changes without affecting other
components of the knowledge base. This required that
the objects in the taxonomy be stored in classes that
were analogous to the real world of automobile
assembly planning. This approach led to a semantic
network representation of the automobile assembly
world where classes and subclasses corresponded to
their appropriate equivalents in the real world. This
type of semantic network representation was very
similar to the KL-ONE representation language. It was
decided to model the Ford automobile manufacturing
knowledge base utilizing KL-ONE in order test the
feasibility of this approach. This prototype proved very
successful and the basic KL-ONE model proved to be

- 63 -



both robust and flexible as the knowledge base evolved
over the years. Changes were made for processing and
memory efficiency (i.e. the use of a hash table to store
the list of concepts), but the KL-ONE logical design has
been successful in terms of our problem domain.

concept through the entire taxonomy.
how the DLMS taxonomy is organized.

Figure 4 shows

DLMS KNOWLEDGE BASE

STRUCTURE

As mentioned previously, the DLMS taxonomy or
knowledge base contains all of the relevant information
that describes the vehicle assembly process at Ford
Motor Company. This includes all of the lexical classes
included in Standard Language such as verbs, nouns,
prepositions, conjunctions and other parts of speech,
various tools and parts utilized at the assembly plants,
and descriptions of operations that are performed to
build the vehicle. Currently the DLMS taxonomy
contains over 9000 such concepts.

The organization of the knowledge base is based on the
KL-ONE model. The root of the semantic network is a
concept known as THING which encompasses
everything within the DLMS world. The children of the
root concept describe various major classes of
knowledge and include such things as TOOLS, PARTS
and OPERATIONS. Each concept contains attributes
or slots that describe that object. The values of these
attributes are inherited from the concept’s parents.
Ranges of valid values can be given for any particular
attribute. Any attempt to put an invalid value in that
attribute will trigger an error. All of the information
dealing with the organization and structure of the
taxonomy is also contained in the taxonomy itself.
There are four types of links that describe the
relationship between any two concepts: subsumes,
specializes, immediately-subsumes and immediately-
specializes.

The subsumption relation describes a link between a
parent concept and all of its children, including
descendants of its children. The "immediately-
subsumes" relation describes only the concepts that are
direct children of the parent concept. The "specializes"
and "immediately specializes" relations are inverses of
the subsumption relation. A concept "immediately
specializes" its direct parent concepts and "specializes"
all of the concepts that are ancestors of its parents.
These relationships are stored as attributes of any given
concept and can be utilized as a tool to trace any

BUMPER I

PART
Attributes:
Size, etc...

IARM-BUMPER [

FIGURE 4: A Sample from the DLMS Taxonomy

KNOWLEDGE BASE MAINTENANCE

The DLMS Knowledge Base is maintained through the
use of two different tools: the Knowledge Base
Manager (KBM) and the Knowledge Base Update
facility (KBU). The Knowledge Base Manager is 
graphical tool that is used by the system developers to
make important changes to the knowledge base that will
affect the actual output generated by the system. Since
this output will have a major impact on the assembly
process any such change must be approved by a
committee representing all of the interested parties. All
changes made to the knowledge base are logged by the
system to keep a record of the system’s modification
history.

The Knowledge Base Update (KBU) facility is used 
system users to make minor modifications to the
knowledge base. A minor modification is a change that
will not impact the output produced by the system.
Examples of minor modifications include the addition
of new words into the taxonomy. The KBU facility
allows users to incorporate these changes directly into
the taxonomy without any kind of system developer
intervention. All changes made through the KBU
facility are also logged for future reference.

- 64 -



KNOWLEDGE BASE VALIDATION
AND VERIFICATION

The DLMS system has been in production for over five
years. In the highly competitive automobile industry,
five years is a relatively long time as the cycle for
bringing new models to market is steadily decreasing.
Therefore, the DLMS knowledge base is being
constantly updated and modified. It was necessary to
develop tools that would prevent errors from being
introduced into the DLMS knowledge base when
making modifications to it.

One such tool is the use of an automated regression
testing tool that runs a suite of test cases against the
knowledge base. The results of the test cases are
compared against a baseline file and all discrepancies
are then flagged. These discrepancies are then
examined manually in order to find out if this change is
correct. The suite of test cases is constantly being
updated to incorporate as many different test scenarios
as possible.

Another approach that we are taking toward knowledge
base validation is the use of automated tools that
analyze the taxonomy. This analysis is based on
knowledge of the problem domain as well as
information about the structure of the DLMS taxonomy.
For example, one requirement of the DLMS system is
that all physical objects must have an attribute that
describes their size. A scan of the taxonomy can then
search for concepts in the class of objects that do not
have a valid size. All concepts that may have an error
are then flagged for future investigation by the systems
organization. These types of utilities are very useful in
finding errors which may contribute to decreased
system accuracy. Our future plans for DLMS include
moving a large portion of the knowledge base
maintenance activity to the user community, which will
not have a technical background. To accomplish this
we are also developing various automated knowledge
base verification and validation routines that will point
out errors as they are being introduced into the
knowledge base.

This utility is based on the concept of a "knowledge
base metric", that is roughly analogous to software
metrics that are used as a quantitative measure of
software quality. Software metrics are computed by
measuring various attributes of code in order to develop
a value that can be used to predict the complexity and
maintainability of this program [Khoshgoftaar, Oman

94]. Our goal is to develop a knowledge base metric
that will be computed automatically when the
knowledge base is modified. This number is computed
by counting the number of discrepancies that have been
found by applying the specific DLMS utilities to the
knowledge base and using that number as a baseline.
After each modification this number is recomputed and
then compared to the baseline. If the new metric is
greater than the baseline this change will be flagged as
it may have introduced additional errors in the
knowledge base. This metric will provide us with an
additional tool of verifying the knowledge base
correctness.

CLASSIFICATION IN DLMS

The DLMS system utilizes a classification algorithm to
create concepts and place them into their appropriate
position in the taxonomy. The classifier utilizes various
attributes of the concept in order to place it into its
correct position. These "classifiable" attributes are slot
values that play a major role in determining where this
concept belongs. For example, the attribute "size" is
very important in classification, while the "output
format" slot has little value in classification. This
classification is performed by finding the appropriate
subsumers, linking the concept in and then locating all
the concepts that should be subsumed by the new
concept. The system narrows this search procedure
considerably by selecting the appropriate node in the
concept to begin the classification process. The concept
which is to be classified is placed at the starting node;
the system then tries to push the new concept node as
far down the tree as possible. The classifiable attributes
are used as a objective measure to determine if the
concept is in its proper place. Within DLMS this
classification algorithm is applied to all of the instances
of the input string that describe the process element. In
a simple element this may include a verb, an object and
an associated tool. When the classifier is complete,
each of the above instances will inherit necessary values
from the knowledge base in order to build the
appropriate operation to describe required actions. For
a more complete explanation of the DLMS classifier see
[Rychtyckyj 94]. Figure 5 illustrates a diagram of a
simple classification procedure.

- 65 -



ITool I [Secure-Oper I [Object I

[Power Tool [
Secure Small Mechanical [

IFastener Operation Small Mechanical
Fastener

Secure Threaded Fastener Thre stener
Using Power Tool Oper

Figure 5. Taxonomy Classification Structure for Secure Operation

This figure describes the classification procedure for an
operation of type "Secure Nut Using Power Tool".
The concept "Nut" belongs to the class of "Threaded
Fasteners". The analyzer subsystem also finds the class
of Power Tools and then attempts to find which
operation most closely matches the derived objects. In
this case, the classifier has identified the power
tool, the "Secure" verb and the object "nut". It will now
try to find the "Secure Operation that most closely
matches these parameters. In this case the Secure
Threaded Fastener Using A Power Tool is the closest
match and the classifier will then use this operation to
start building its output solution.

EVALUATION OF KL-ONE IN DLMS

This section will describe the advantages and
disadvantages of the KL-ONE representation scheme as
it has been utilized within DLMS. Along with Classic
[Brachman, et al. 91] DLMS has been one of the few
KL-ONE-based systems that has been utilized in
production for a considerable amount of time. KL-ONE
was selected as the appropriate tool for this project
because of the requirement for a flexible and powerful
knowledge management tool. The knowledge base
required to store information about the vehicle assembly
process is both complex and dynamic. Over the last
two years Ford Motor Company has replaced or
changed more than half of its product line in North
America, including its two top selling vehicles: the
Taurus and F-Series pickup mack. Such a rate of

- 66 -



change requires that the DLMS system be able to
incorporate continuous updates to its knowledge base.
These changes also included major modifications to the
structure of the taxonomy, as well as those related to
maintaining the actual automobile assembly knowledge
itself.

The most complex part of the DLMS taxonomy is the
class of concept known as an OPERATION. An
operation is a concept that describes all of the
individual actions that must be done at the assembly
plant. A simple operation, such as "Hammer Object"
contain the following slot values: Tool (tool required),
Modapts (Modapts codes that describe this operation
and an Actions slot. In this case the Actions slot will be
empty, because no additional actions are required.
However, the vast majority of operations require a
multitude of actions, so this value will contain a list of
the other required actions. The system will then process
each of these actions in turn, and it is quite likely that
the secondary actions may also contain subordinate
actions. Therefore, the output generated from a single
operation may be accessed from many different places
in the taxonomy. This flexibility makes it possible to
model the real world in DLMS, but it also makes it very
difficult to trace where an error may have occurred.
This is very analogous to tracing the execution of a
large rulebase to find a single rule that has incorrectly
fired. It is also possible to introduce cycles into the
taxonomy; an indirect cycle of the form A -> B -> C ->
A will usually not be noticed until an actual run goes
into an infinite loop. This tradeoff between flexibility
and ease of maintenance is common as the complexity
of the world we are trying to model increases. As
described previously in the section on knowledge base
validation and verification, our approach is to build
more sophisticated tools that incorporate intelligence
about both KL-ONE and the automobile assembly
process in order to improve the overall maintenance.

Another problem we have encountered is the
requirement from various user organizations to produce
documents describing the various taxonomy outputs.
The complexity of the taxonomy makes any general
reports extremely long and difficult to follow. Our
approach has been to educate the user community about
the structure of the DLMS taxonomy in contrast to a
spreadsheet or a database, which are well understood by
most people. Another issue that we must be careful
with is the fact that taxonomy modifications may change
the output from a previous run. The user community is
not very receptive when a process sheet that worked last

year is now flagged as invalid, because we have
improved the error-checking capability of the system.

To forestall most of these problems we disseminate any
such changes to the user community when they are
implemented in order to prevent any future
misunderstandings. Overall, based on our years of
experience with the KL-ONE representation system, we
are quite satisfied that KL-ONE has proved to be a very
capable tool and has contributed greatly to the success
of the DLMS system.

CONCLUSIONS

In this paper we have tried to describe our experience at
Ford Motor Company with the KL-ONE representation
system. The DLMS system is a production system that
is utilized by hundreds of users throughout the
company. Therefore, the reliability of the system is of
the highest priority and any new technology must be
robust enough to operate successfully in this
environment. We have discussed the ongoing problems
of knowledge base maintenance and knowledge base
validation and verification. Our solutions to both
problems include automated tools and manual
intervention by the system developers as required. Our
goal includes the development of more sophisticated
tools that would eventually pass all knowledge base
maintenance activity to the user community. We have
also discussed the ramifications of using a complex
knowledge representation system in the realm of a
corporate business environment and the steps we have
taken to improve this situation. Our extensive use of
KL-ONE within DLMS has convinced us that the KL-
ONE representation system is an excellent tool for
modeling the complex world of vehicle assembly
planning and we are planning to expand our usage of
KL-ONE into other problem domains in the automobile
industry.

Acknowledgments

The Direct Labor Management System was a product
of the work of many people that have contributed to the
success of the system over the years; therefore I would
like to give credit to the following people: John
O’Brien, Tom Kaszamarek, Scott Hatfield, Wayne
Johnson, Richard Woodhead, Alan Turski, Henry Brice,
Tom Vitale, Jay Zaback and Rick Keller.

- 67 -



I would also like to thank Dr. Robert Reynolds of
Wayne State University for all of his valuable insights
and suggestions. I am also indebted to Alan Turski,
whose work on the DLMS system was also instrumental
for its success. Thanks are also due to the anonymous
referees, whose comments and suggestions I have tried
to incorporate into this paper.

References

Baade, F., (1990), "Terminological Cycles in KL-ONE-
based Knowledge Representation Languages" in
Proceedings of the Eighth National Conference on
Artificial Intelligence. vol. 2., pp. 621-626.

Brachman, R., McGuiness, D., Patel-Schneider, P.,
Resnick, L., Borgida, A., (1991) "Living With Classic:
When and How to Use a KL-ONE-Like Language" in
Principles of Semantic Networks, ed.
J. Sowa, pp. 401-456, Morgan Kaufmann Publishers.

Brachman, R., Schmolze, J.(1985), "An Overview 
the KL-ONE Knowledge Representation System",
Cognitive Science 9(2), pp. 171-216.

Charniak, E., Riesbeck, C., McDermott, D., Meehan, J.,
(1987), Artificial Intelligence Programming, pp. 304-
336, Lawrence Erlbaum Publishers.

Industrial Engineering Services (1988), Modapts Study
Notes for Certified Practitioner Training.

Khoshgoftaar, T., Oman, P., (1994), "Metrics 
Software", IEEE Computer, Vol. 27, No. 9, pp. 13-15.

Lipkis, T., "A KL-ONE Classifier", (1981), Consul
Note #5, USC/Information Sciences Institute.

O’Brien, J., Brice, H., Hatfield, S., Johnson, W.,
Woodhead, R. (1989), "The Ford Motor Company
Direct Labor Management System: in Innovative
Applications of Artificial Intelligence, ed. Schorr &
Rappaport, pp. 331-346, MIT Press.

Rychtyckyj, N. (1994), "Classification in DLMS
Utilizing a KL-ONE Representation Language" in
Proceedings of the Sixth International Conference on
Tools With Artificial Intelligence, pg. 339-345, IEEE
Computer Society Press.

Schmolze,J., Lipkis, T.,(1983), "Classification in the

KL-ONE Knowledge Representation System" in
Proceedings of the Eighth International Joint
Conference on Artificial Intelligence, pp. 330-332,
Morgan Kaufmann Publishers.

Woods, W., Schmolze, J.,(1992), "The KL-ONE
Family" in Computers & Mathematics with
Applications, Vol. 23, No. 2-5, pp. 133-177.

- 68 -




