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Abstract

We present a new methodology for testing de-
cision procedures for modal and terminological
logics which extends the fixed-clause-length test
model, commonly used for propositional satis-
fiability testing. The new method is easy to
implement and to use, and it allows for a sta-
tistical control of some important features, e.g.,
hardness and satisfiability rate, of the formulas
generated.

1 Introduction
In the area of automated reasoning in modal and ter-
minological logics there seems to be very little bibli-
ography on both problem sets and test methodologies.
Most authors do not present empirical tests. Some au-
thors test their systems on groups of single formulas,
mostly taken from textbooks (see, e.g., [Catach, 1991;
Demri, 1995]). Few others use formulas which are
derived from or simulate realistic problems (see, e.g.,
[Bazxier et al., 1994]). As far as we know, there has
been little study on classes of test formulas and on their
intrinsic properties (e.g., hardness, satisfiability likely-
hood). Modal $4 is a noteworthy exception, as it is pos-
sible to exploit the Goedel-Tarski translation from intu-
itionistic logic into $4. A second noteworthy exception
can be found in [Halpern and Moses, 1992]. In this paper
the authors describe a class of modal formulas which are
intrinsically hard, as they are provably satisfiable only
in exponential-size Kripke structures. An empirical test
based on these formulas is presented in [Giunchiglia and
Sebastiani, 1996b].

In propositional and first-order theorem proving, in-
stead, there is a wide bibliography on both problem sets
(see, e.g., [Pellettier, 1986; Suttner and Sutcliffe, 1995])
and test-generating methods (see, e.g., [Buro and Bun-
ing, 1992; Mitchell et al., 1992]). In this paper we de-
scribe a new methodology for testing decision procedures
for modal and terminological logics, in particular for K,
K(m) and A£C, which generalizes a test model com-
monly used in propositional satisfiability (SAT from now
on). The new method is easy to implement and to use,
and it allows for a statistical control of some important

features features, e.g, hardness and satisfiability rate, of
the formulas generated.

The paper is organized as follows. In Section 2 we
briefly describe the test method used in SAT. In Sec-
tion 3 we describe our new test methodology for K,
K(m)/A£C. In Section 4 we present an example of em-
pirical test which highlights the features and effective-
ness of our method. Finally, in Section 5 we give hints
about how our proposed methodology can be extended
to other logics.

2 The fixed-clause-length SAT method
We start from the fixed clause-length SAT test model
(see, e.g., [Mitchell et al., 1992; Buro and Buning, 1992])
with clause length K = 3 (3-clause-length from now on),
briefly described below. Given a number N of proposi-
tional variables, for increasing values of the clause num-
ber L, sufficiently many (100, 500, 1000,...) random
3CNF wffs are generated and given in input to the pro-
cedure under test. After the computation, a statistical
analysis of the results is performed. The resulting statis-
tical values, like satisfiability percentages, mean/median
CPU times or mean/median size of the search space, are
plotted against the L/N ratio. This process can be re-
peated for different numbers of propositional variables.
Random 3CNF wffs are generated as follows: "for given
L and N, an instance of a random 3SAT is produced by
randomly generating L clauses of length 3. Each clause
is produced by randomly choosing a set of 3 proposi-
tional variables from a set of N, and negating each with
probability 0.5." (Quote from [Mitchell et al., 1992]).

The success of this method is due, in our opinion,
to three main features. First, 3CNF wffs represent all
propositional formulae. In fact, it is well-known (see,
e.g., [Garey and Johnson, 1979]) there is a satisfiability-
preserving way of converting all propositional wffs into
3CNF. Second, 3CNF wits can be randomly generated
according to only 2 parameters:

(i) the number of clauses 
(ii) the number of propositional variables 

Finally, the parameters L and N allow for a coarse "tun-
ing" of the probability of satisfiability and of the hard-
ness of random 3CNF wffs. In fact, L [N] monotonically
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function rand_wff(d,m,L,N,p)
fori:--1 toLdo

Ci := rand_clause(d,m,N,p);

return AL=I C~;

function rand_clause(d,m,N,p)
for j:=I to3do

lj :-- rand_lit(d,m,N,p);
3return Vj=I lj;

function rand_lit(d,m,N,p)
:= rand_atom(d,m,N,p);

if flip_coin(O. 5)
then return qa;
else return -~;

function rand_atom(d,m,N,p)
if ( d=O or flip_coin(p))
then return rand_propositionaLatom(N);
else Dr := rand_box(m);

C := rand_clause(d-l,m,N,p);
return DrC ;

Figure 1: The algorithm of the random generator.

increases [decreases] the level of constraintness. Thus,
varying the L/N ratio, we pass from a situation where
wifs are underconstrained (and thus mostly satisfiable)
to one where wtfs are overconstrained (and thus mostly
unsatisfiable). As a consequence, the plot of the satisfia-
bility percentages draws a transition from 100% satisfia-
bility to 100% unsatisfiability [Mitchell et al., 1992], with
the 50% crossover point always located around the fixed
value L/N ~ 4.3. Moreover, the mean and median CPU
time plots reveal a easy-hard-easy pattern always cen-
tered in the "100% satisfiable-100% unsatisfiable" tran-
sition zone. Increasing N the plots become sharper.
This phenomenon, known as "phase transition" for some
analogies with thermodynamics, has been widely inves-
tigated both empirically (see, e.g., [Kirkpatrick and Sel-
man, 1994]) and theoretically (see, e.g., [Williams and
Hogg, 1994]). Therefore, suitable choices of L and 
allow us to generate very hard wifs with near 50% satis-
fiability probability.

3 The 3CNFK(m) test method

Consider the modal logic K(m), as it is described, e.g.,
in [Halpern and Moses, 1992] 1. In order to extend
the fixed-clause-length test methodology,, we first give
a suitable definition of CNF wffs for K(m), CNFK(m)

1As it is well known, the terminological logic .4£C is a
notational variant of the modal logic K(m), that is, K with
m distinct modalities [Schild, 1991]. In this paper we always
refer to K(m) rather than to .A£e. In particular, we speak
of "wffs" rather than "concepts", "modalities" rather than
’~oles", "satisfiability" rather than "coherence", and so on.

from now on.

¯ a CNF/<(m) wff is a conjunction of CNFK(m)
clauses;

* a CNFK(m) clause is a disjunction of CNFK(m) 
erals, i.e., CNFK(m) atoms or their negations;

¯ a CNFK(m) atom is either a propositional atom 
a wff of the form DrC, where Dr E {DI,..., Din}
and C is a CNFK(m) clause.

Notice that conjunctions appear only at the top level of a
CNFK(m) wff. Without loss of generality, we can fix the
number of literals per clause. A CNFK(m) wff is called
a 3CNFK(m) wff iff the number of literals per clause 
fixed to 3. 3CNFK(m) wffs can be randomly generated
according to only 5 parameters:

(i) the modal depth 
(ii) the number of distinct boxes 
(iii) the number of top-level clauses 
(iv) the number of propositional variables 
(v) the probability p with which any random

3CNFK(ra) atom is propositional.

The algorithm of the random generator is presented in
Figure 1. A 3CNFK(m) modal wff of depth d is produced
by randomly generating L modal 3CNFK(ra) clauses 
depth d. A 3CNFK(m) modal clause of depth d is pro-
duced by randomly generating three 3CNFK(m) modal
atoms of depth d, and negating each of them with prob-
ability 0.5. (The function flip_coin(p) returns True with
probability p, False otherwise.) A 3CNFK(m) modal
atom of depth d is produced in the following way. If
either d = 0 or flip_coin(p) returns True, then the
function rand_propositional_atom(N) picks randomly an
atom Ak E {A1,...,AN}, which is returned. (Intu-
itively, the parameter p establishes the mean ratio of the
propositional atoms at every level of the wif tree.) Oth-
erwise a box Dr, picked randomly from {D1,..., Din}
by the function ran&box(m), followed by a 3CNFK(m)
modal clause of depth d - 1, is returned.

The modal 3-clanse-length test method is then defined
in analogy with the propositional case. For fixed N,
d, m and p, for increasing values of L, a certain num-
ber (100, 500, 1000... ) of random 3CNF/~(ra) wits 
generated, internally sorted, and then given in input
to the procedure under test. Satisfiability percentages,
mean/median CPU times or mean/median search space
sizes are plotted against the L/N ratio 9.

The methodology proposed preserves the three main
features of the SAT method. First, CNFK(m)
[3CNFK(m)] wtfs represent all K(m) wifs, as there 

2As a test rule we often introduce a timeout of 1000s on
each sample wtf. If the decision procedure under test exceeds
the timeout, a failure value is returned and the CPU time
value is conventionally set to 1000s. The satisfiability per-
centage is then evaluated on the number of samples which
terminate within the timeout. Under this test strategy, the
satisfiability data produced should be considered only as a
coarse indication.
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Figure 2: The results of the three experiments.

a K(m)-satisfiability-preserving way of converting any
K(m) wff into CNFK(rn) [3CNFK(m)]3. Second, the us-
age of the 3CNFK(m) form minimizes the number of pa-
rameters to handle. In fact, we need only one "and-
branch" parameter L and no "or-branch" parameters,
independently of the modal depth d. Finally, the pa-
rameters L and N allow for a coarse "tuning" of both
the satisfiability probability and the hardness of ran-
dom 3CNFK(m) modal wffs. In fact, L IN] monoton-
ically increases [decreases] the level of constraintness
so that, again, varying the L/N ratio, the plot of the
satisfiability percentages draws a transition from 100%
satisfiability to 100% unsatisfiability. In [Giunchiglia

SThe conversion works recursively on the depth of the wff,
f~om the leaves to the root, each time applying to sub-wffs the
propositional CNF [3CNF] conversion and the transformation
o, hj V, ~,~ ==~ hj ~, V, ~,~.

and Sebastiani, 1996a; 1996b] we have observed easy-
hard-easy patterns in all the CPU-times/search-space-
size mean/median values plots, which were centered in
the "100% satisfiable-100% unsatisfiable" transition zone
(see also Section 4.2). This showed the existence of 
phase transition phenomenon also for K(m). Therefore,
it is possible to generate very hard 3CNFK(m) problems
with near 0.5 satisfiability probability.

4 An example of 3CNFK(m) testing
As an example of the effectiveness of the 3CNFK(rn) test
method, we present here the results of an empirical test
taken from [Giunchiglia and Sebastiani, 1996b] 4 and use
them to analyze the behaviour of the formulas generated

4The test code and all the results presented in this paper
are available via anonymous FTP at ftp. mrg. dJ.st, unige, it
in pub/mrg-systems/ksat/ksat 1/.
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by the 3CNFK(m) method. In particular, we focus on the
hardness and satisfiability rate of such formulas, and on
how the latter values are affected by the parameters of
the generators.

Figure 2 describes the results of three experiments,
for a total amount of 48,000 randomly generated wffs,
obtained by running KSAT [Giunchiglia and Sebastiani,
1996a; 1996b], a "SAT-based" decision procedure for
K(m)/Af-~. All curves represent 100 sample wffs per
point. The range 1... 40 for the X-axis parameter L/N
has been chosen empirically to cover coarsely the "100%
satisfiable - 100% unsatisfiable" transition. In each ex-
periment we investigate the effects of varying one pa-
rameter while fixing the others. In Experiment 1 (left
column) we fix d = 2, m = 1, p -- 0.5 and plot different
curves for increasing numbers of variables N -- 3, 4, 5.
In Experiment 2 (center column) we fix d -- 2, N -- 
p = 0.5 and plot different curves for increasing number
of distinct modalities m -- 1, 2, 5, 10, 20. In Experiment
3 (right column) we fix m -- 1, N = 3, p = 0.5 and plot
different curves for increasing modal depths d -- 2, 3, 4, 5.
For each experiment, we present two distinct sets of
curves, each corresponding to a distinct row. In the first
(top row) we plot the median size of the space searched
by KSAT. This gives an indication of the hardness of
the formulae. In the second (bottom row) we plot the
percentage of satisfiable wffs evaluated by KSAT. This
gives an indication of the satisfiability likelyhood of the
formulae.

Despite the big noise, due to the small samples/point
rate (100), the results indicated in Figure 2 provide inter-
esting indications. We report below (Section 4.1) a first
pass, experiment by experiment, analysis of the results.
This gives us an idea of how efficiency and satisfiability
are affected by each single parameter. In Section 4.2 we
report a global analysis of the results we have.

4.1 A testwise analysis

The results of the first experiment (left column) show
that increasing N (and L accordingly) causes a relevant
increase in the hardness of the test formulae. This should
not be a surprise, as in K/K(m), adding few variables
may cause an exponential increase of the search space.
Each variable may in fact assume distinct truth values
inside distinct states/possible worlds, that is, each vari-
able must be considered with an "implicit multiplicity"
equal to the number of states of a potential Kripke model
for the input formula ~, which is 0(19old) [Halpern, 1995].

The results of the second experiment (center column)
present two interesting aspects. First, the complexity of
the search monotonically decreases with the increase of
the number m of modalities. At first this may sound like
a surprise, but it should not be so. In fact, the search tree
is "divided and conquered" into m non-interfering search
trees, each restricted to a single Dr. Therefore, the big-
ger is m, the more partitioned is the search space, and
the easier is the problem to solve. Second, a careful look
reveals that the satisfiability percentage increases with
m. Again, there is no mutual dependency between sub-

wffs occurring under the scope of different [Dr’s. There-
fore the bigger is m, the less constrained -- and thus
the more likely satisfiable -- are the randomly-generated
wffs.

The results of the third experiment (right column) pro-
vide evidence of the fact that complexity increases with
the modal depth d. This is rather intuitive: the higher
is d, the deeper are the Kripke models to be searched,
and the higher is the complexity of the search.

4.2 A global analysis

We highlight now some experimental evidence which is
shared by all three experiments. First, consider the sat-
isfiability plots (bottom row). Despite the noise and
the approximations due to timeouts, it is easy to no-
tice that the 50% satisfiability point is centered around
L/N = 15 ~ 20 in all the experiments. Moreover, sim-
ilarly to [Mitchell et al., 1992], a careful look to the
first experiment reveals that the satisfiability transition
becomes steeper when increasing N (e.g., compare the
N = 3 and N = 5 plots). Second, consider the search
space plots (top row). In all the experiments consid-
ered, the curves draw an easy-hard-easy pattern, whose
peak is centered around the satisfiability transition --
although, unlike, e.g., [Mitchell et al., 1992], they seem
to anticipate a little the 50% crossover point. Moreover
the locations of the easy-hard-easy zones do not seem to
vary significantly, neither with the number of variables
N (left column), nor with the number of modalities 
(center column), nor with the depth d (right column).

The results of this test suggest some considerations.
First, we may conjecture (to be verified!) the exis-
tence for K(m)/~4~C of a phase transition phenomenon,
similar to that already known for SAT and other NP-
complete problems. As far as we know, this is the first
time this phenomenon is revealed with modal formulas.
Second, the 3CNFK(m) test method allows us to gener-
ate formulae "as hard as we like them", with near 50%
satisfiability probability. In fact, once we have fixed m,
d and p, we can "tune" the hardness by choosing N and
then the satisfiability rate by choosing L accordingly.
Finally, the test shows that the size of the search space
decreases after a certain size of the formula under test.
This may surprise whoever is used to tableau-based sys-
tems, where the space searched always grows with the
size of formulae, even with fixed d and N. As described
in more detail in [Giunchiglia and Sebastiani, 1996b],
this is due to the fact that, unlike tableaux, SAT proce-
dures prune a branch as soon as it violates a constraint
of the formula; the more constrained the formula is, the
more likely an uncomplete branch violates a constraint,
the higher the search tree is pruned. The 3CNFK(m)
method has enabled us not only to evidence a big quan-
titative performance gap between two procedures, but
also to detect an intrinsic qualitative wickedness of one
of them.
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5 Beyond K(m)/~LC

Although we do not yet have any empirical evidence
backing our claim, we believe that our method will work
for a wide class of logics, and, more specifically with
most (all?) normal modal logics. First, independently
on the logic considered, L monotonically increases the
constraintness of the formulae, decreasing their satisfia-
bility probability, causing thus a satisfiability transition.
Different logics can only affect the location and the steep-
ness of the transition itself: the higher the logic in the
hierarchy of normal modal logics, the more likely unsat-
isfiable the formula, the earlier the transition. Second,
the last consideration in Section 4.2 (see also [Williams
and Hogg, 1994]) suggests that easy-hard-easy patterns
in the size of the search space are also a direct conse-
quence of the monotonic increase of constraintness, inde-
pendently on the kind of logic considered. Again, differ-
ent logics can only affect the location and the steepness
of the peak itself. We have performed an analogous (un-
published) set of experiments for modal $5, in which we
have obtained results qualitatively similar -- but a little
shifted to the left, as expected -- to those of [Giunchiglia
and Sebastiani, 1996a]. We expect easy-hard-easy pat-
ters centered in the satisfiability transition zone will exist
for most (all?) modal normal logics.

There is a natural way to extend our method to log-
ics which extend the syntax of K(m)/Af_~ with other
prefixed constructs C~’s -- like, e.g., number restriction,
inverse, composition, .... For every new construct Ci

we need a function rand.Ci(vc’, vC’,...), which we use
to randoml~ generate Ci according to some specific pa-
rameters v~’, v2c’, .... The random generator rand_wff
is thus extended by simply substituting rand_box(m)
with a function which either (i) selects, with probabil-
ity Pc,, one C~, and returns rand_C~ (vc’ , vc’,...), or (ii)
returns rand_box(m), with probability 1 - ~]~i Pc,. The
parameters Pc,, re1~, vc’,.., are added to the parameter
list of the generator, for every construct Ci. To per-
form a test, all parameters except L and one parameter
v E {d, m, p, N, Pc,, vc’, vCl,...} are set to fixed values.
Then the experiment can be run similarly to the ones in
Figure 2 (where v E {N, m, d} and Pc, = O, for all i).
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