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1 Introduction

The K-Rep system is an industrial strength knowledge
representation system, based on description logic and
developed at IBM Research. Its principal application
has been to the creation of large medical lexicons as part
of clinical information systems. Terminologies involving
more than 100,000 separately defined terms have been
contructed with K-Rep. The use K-Rep in this arena is
described in [MW+]. In this paper, we wish to focus on
how algebraic techniques have played a fundamental role
in the implementation of K-Rep.

Usually, KL-ONE type languages (see [BS85]), such
as K-Rep, are explained informally as logics or they are
given an informal set-theoretic semantics. To be more
precise about it, a knowledge base (KB) expressed in
such a language is treated as a set of logical axioms.
Given such a set of axioms, we can ask about those as-
sertions that are true in all models. This leads to treating
questions of subsumption of concepts with respect to a
KB as questions of subset inclusion of corresponding sets
in all models of the KB.

There can be another point of view, one that we took
in implementing K-Rep, one that leads to a structural
— as opposed to a logical or model-theoretic — approach
to computing subsumption. If a description logic can be
used to describe a taxonomy or classification scheme con-
sisting of concepts related by subsumption, then what we
wish to do is to realize the subsumption relation as the
partial order of a meet-semilattice. According to this
view, a KB is a presentation via generators and defin-
ing relations of an algebra of semantic concepts. Thus,
we bring to bear on knowledge representation the ma-
chinery of the field of universal algebra. In the case at
hand, the kind of algebra that results has no established
name, but it is a meet-semilattice with additional struc-
ture. We call the partial ordering of the algebra semantic
subsumption. We have been able to use the structure of
the algebra denoted by a KB to efficienctly represent
concepts in a way that facilitates the computation of
subsumption.

Historically, what happened with K-Rep was that an
implemented early version existed and proved useful. In
that version, subsumption was computed by means of a
structural analysis of the concepts involved. Then one of

us (Oles) conversant with formal semantics and univer-
sal algebra joined the K-Rep project. At that point, the
aim was to extend the language by adding the some con-
struct: 3 R : C. Because the algebra that would enter
into the structural analysis was not immediately clear,
this proved to be nontrivial. From our understanding of
set-theoretic models of knowledge bases, we developed a
set of algebraic axioms to use in analyzing the structure
of concepts. We then massaged these into the code. The
result was a very successful system that had added func-
tionality and could be seen to valdiate the mathematical
idea of regarding a K-Rep KB as a presentation of an
algebra. However, an attempt to give a really precise,
formal mathematical semantics for K-Rep is something
we are only now trying to do. In so doing, we have come
to realize that the existing formalisms of universal alge-
bra aren’t quite powerful enough to justify everything
we have apparently done in practice! Thus, some ideas
that we wish were theorems are only conjectures, but the
implemented system gives us confidence that the conjec-
tures are true.

A more complete exploration of the idea of regarding
a knowledge base as a presentation of an algebra in a
setting where all the conjectures do indeed turn out to
be theorems can be found in [096]. There the reader
can get a better appreciation of what it means to give
a formal proof that an implementation technique in this
area is correct. The computer scientist who needs to
brush up on universal algebra can see [W92].

2 KRP

The entire K-Rep system is a bit too cambersome to dis-
cuss here. More to the point, some of its features have
no bearing on the issues we wish to take up. Conse-
quently, we will now introduce a description logic KRP,
standing for K-Rep Prime, which has all the features
reminiscent of KL-ONE found in the K-Rep system. In
addition to avoiding the nuts and bolts of the K-Rep sys-
tem, by focusing on KRP, we will not address the nature
of facets, which may be attached to a concept name or
a role name, because neither are they supposed to affect
how a newly introduced concept is classified, i.e., how it
is to be inserted into an existing taxonomy.

For the language KRP, we posit the existence of two
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countably infinite digjoint sets of identifiers: I, to be
used as names of concepts, and R, to be used as names
of roles. Of course, K-Rep itself doesn’t force users into
this kind of straightjacket, which is reminiscent of an-
cient versions of FORTRAN, but it is a convenient theo-
retical simplification. The following is a specific abstract
syntax for KRP, in which the top level nonterminal B
defines knowledge bases, A defines terminological ax-
ioms, C defines syntactic concepts, and N is the set of
nonnegative integers:

B := emptykB | B;A

A 1= define—primitive—concept I C
| define—concept I C
| disjoint—primitivesII

C == I|T|L1L]|(CAC)]| (YR:C)
| §3R:C) | (atmost N C)
| (atleast N C)

Here emptyKB is the KB corresponding to the empty
sequence of terminological axioms. In general, KB’s are
sequences, not just sets of terminological axioms, to re-
flect the idea that the representation of a knowledge base
is to be constructed incrementally as terminological ax-
ioms are processed one by one. Terminological cyles are
not supported. The first two terminological axioms serve
to define concept names, and the third declares that two
primitive concepts are to be disjoint. The constructs for
creating compound concepts are fairly standard.

A well-formed knowledge base is

1. one such that each identifier in the KB that names
a concept that appears in the knowledge base (a)
makes its first appearance in a terminological axiom
that does not define it in terms of itself, and (b) has
no other definition in the KB, and

2. one in which the identifiers in
a disjoint—primitives axiom have indeed been
earlier defined as naming primitive concepts.

We will not attempt to assign meaning to KB’s that are
not well-formed. We do expect that, if one well-formed
knowledge base is a reordering of the terminological ax-
ioms of another, then both will have the same semantic
meaning,.

From the preceding description of syntactic concepts,
we extract the signature 2, whose operators are as fol-
lows:

1. the two constants T and 1,
2. the binary operator A,

3. for each role name R, the two unary operators V R :
and 3 R:, and

4. for each nonnegative integer n, the two unary oper-
ators atmost n and atleast n.

Thus, the collection of all syntactic concepts of KRP can
be described as the free Q2-algebra generated by I.

3 Algebraic Laws Used in
Implementation

Given any set-theoretic model of a well-formed KB ex-
pressed in KRP, there are many ways to make it into an
Q2-algebra. The reason that there are many ways is that
we are free to interpret the roles not explicitly mentioned
in the KB as binary relations on T in any way we want.

Q-algebras that arise as models of KB’s are of central
interest. What algebraic laws are true in all such models?
Below is a list of equational laws, schema for equational
laws, and, at the end, one slightly non-equational law
that hold in all set-theoretic models of KRP knowledge
bases. Some of the laws may not look like equations,
but they really are, because the first three laws are the
meet-semilattice axioms, which enable us to regard C' <
D as a shorthand for C = C A D. In the following
list, Cy,-++,Cn,C, D, and E are algebra elements (i.e.,
possible set-theoretic interpretations of concepts), R is a
role name, and n and m are nonnegative integers.

1. CAD)AE = CA(DAE),

2. CAD = DAC,

3. CAC = C,

4. C < T,

5. L < C,

6. VR:(CAD) = YVR:C)A(VR:D),
7.3R:(CAD) < 3R:C,

8. VR:T =T,

9.3R:L = 1,

10. VR:C)ABR:D) = (YR:C)A(IR:(CAD)),
11. atmost 0 R = VR: 1,

12. atleast 0 R = T,

13. atmost n R < atmost m R, if n <m,

14, atleast n R < atleast m R, if m <n,

15. (atmost n R) A (atleast m R) = L, if n <m,
16. 3 R:C)A(atmost 1 R) < V R:C, and finally
17.(3 R Ci) A --- AN (3 R : Cp) <

atleast ;c({Cl, -++,Cn}) R, where n > 0.

The function k depends on the algebra under dis-

cussion, but its definition is uniform across all Q-

algebras. x takes as argument a nonempty finite set

& of algebra elements and produces a natural num-

ber. If L € &, then k(£) = 0. Otherwise, k() is the

largest integer k such that there exists a partition

Sy, -+, Sy of £ satisfying

(a) forallie {1, ---,k}, AS:i # L, and

(b) for all 4,5 € {1,---,k} with ¢ # j, (AS:) A
(AS;) = L.

The authors would like to thank Peter Selinger for sim-

plifying the original version of the seventh law in the list
above.
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Using ASAMAL as an acronym for All Some At Most
At Least, define an ASAMA L-meet-semilatice to be any
Q-algebra — not just those algebras of sets that arise as
models of KRP knowledge bases — satisfying the 17 ax-
ioms and axiom schemas listed above. ASAMAL-meet-
semilattices are apparently not a variety (i.e., equation-
ally defined class) of algebras, atthough we do not have
a proof of this fact. However, we now see in retrospect
that we pretended that they were a variety. In particular,
we pretended that we knew that each set of generators
paired with a set of defining relations uniquely deter-
mined a unique most general ASAMAL-meet-semilattice
generated by those generators and satisfying those defin-
ing relations. Formal proofs that the desired theorems
are true can almost certainly be extracted from our im-
plementation techniques.

As long as we assume that ASAMAL-meet-
semilattices presented by KRP knowledge bases exist,
it is easy to see that every element of such an algebra
can be put into a normal form. Whether or not one con-
cept subsumes another can be determined by comparing
the normal forms. Space restrictions prevent us from go-
ing into detail, but the normal forms involve antichains
of concepts and the Smyth ordering from domain theory
pops up.

Our main unproved conjecture is that every
ASAMAL-meet-semilattice arises as an algebra of sets.
From this, it should follow that any subsumption relation
true in all models of a knowledge base can be seen to be
true using the axioms above together with the assertions
provided by the KB. Another conjecture is that every
ASAMAL-meet-semilattice presented by a KRP knowl-
edge base is actually a lattice. This is not too surprising
a conjecture in that it can be translated as saying that
any two concepts have a least common subsumer. A care-
less reading of Proposition 1 of [CBH] might lead one to
believe that pairs of concepts in description logics sup-
porting binary conjunction always have a unique least
common subsumer when they have at least one common
subsumer (e.g., T). This conclusion is unwarranted. The
real problem in proving that two concepts have a least
common subsumer is to show the existence of some least
common subsumer when the two concepts have infinitely
many common subsumers. We do not expect to find a
simple two-line argument showing that description logics
have least common subsumers of arbitrary pairs of con-
cepts, because it would probably also show all bounded
meet-semilattices are lattices, which is false.
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Abstract

The modal description logic ALCK
both constitutes a promising frame-
work for reasoning about actions and
allows for the formalization of several
non-first-order aspects of KR systems
based on DLs. However, other non-
monotonic features of DL-based KR
systems, in particular role and concept
closure inside the knowledge base, lack
an intuitive formalization in this modal
framework. To overcome these diffi-
culties, we propose a modification of
the semantics for ALCK, which con-
sists in allowing selective minimization
of primitive concepts and roles, thus
providing for a correct formalization of
the notion of role and concept closure.

1 Introduction

Recent research in description logics (DLs) has
dealt with the problem of extending the lan-
guage of such formalisms with modal operators,
increasing their expressive power in order to al-
low for the formalization of notions like knowl-
edge, belief, time, intention and others [Baader
and Laux, 1995; Baader and Ohlbach, 1995].
Specifically, a nonmonotonic modal extension of
DLs has been proposed in [Donini et al., 1992;
1994; 1995]. Such an extension, the autoepis-
temic description logic ALCK, both constitutes
a promising framework for reasoning about ac-
tions [De Giacomo et al., 1996] and allows for the
formalization of several non-first-order aspects
of KR systems based on DLs [Borgida et al.,
1989; MacGregor, 1988], like procedural rules,

defaults, a weak form of concept definition and
some forms of closed-world reasoning [Donini et
al., 1994; 1995]. However, other nonmonotonic
features of DL-based KR systems, in particu-
lar role and concept closure inside the knowl-
edge base, lack an intuitive formalization in this
modal framework. We illustrate such notions
through two examples.

Example 1 (Concept closure). Let ¥; be
the following ALCK knowledge base:

doctor(Paula)
lawyer(Marc)
VCHILD.has-blue-eyes(Ann)

Suppose we want to add to ¥ the following infor-
mal assertion A: “One of Ann’s children is one
of the known doctors”. Now, since Paula is the
only known doctor, we want to be able to con-
clude that Paula is one of Ann’s children, and
hence

U; U {A} = has-blue-eyes(Paula)

The intuitive formalization of A in ALCK is the
following assertion A':

A' = 3CHILD.Kdoctor(Ann)

Unfortunately, the original ALCK semantics
does not capture the intended meaning of ¥} =
¥; U {A'}. Informally, the closure is formal-
ized through the minimization of the knowl-
edge about the concept doctor. However, in
the ALCK semantics every concept and role is
minimized, and, in this particular case, the in-
teraction between the minimization of the role
CHILD and the minimization of the concepts in
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