From: AAAI Technical Report WS-97-04. Compilation copyright © 1997, AAAI (www.aaai.org). All rights reserved.

On Effort in AI Research

A Description along Two Dimensions

Franz-Ginter Winkler
Austrian Society for Cognitive Science
Barichgasse 10/2/10, A-1010 Wien, Austria
E-mail:winklexr@coams.atc.co.at

Abstract

In this paper we describe Artificial Intelligence as re-
search that moves along two different axes: human-
compatible knowledge and machine-compatible pro-
cessing. An analysis of computer chess research along
these dimensions shows that Al more and more di-
verges into an engineering branch and a cognitive
branch. As an explanation, we offer a hypothesis
about the dependency of research effort on these di-
mensions. It becomes obvious that the most rewarding
projects are the hardest.

“If one could devise a successful chess machine,
one would seem to have penetrated to the core of
human intellectual endeavour.”

Newell, Shaw & Simon

Introduction

We view Artificial Intelligence as a science with the
goals of, on the one hand, providing computers with
the ability of solving tasks that are commonly per-
ceived as requiring intelligence, and, on the other hand,
furthering our understanding of human thinking. The
basic problem that Al has to face is to integrate the
abstract concepts that human beings usually use for
problem solving with the strict algorithmic process-
ing definitions that are required for implementing pro-
grams on a computer.

To illustrate these dimensions consider the two prob-
lems depicted in figure 1. The first one is a slightly
unusual endgame position, but, after some delibera-
tion, a trained chess player will detect many concepts
that are familiar from other endgames. For example,
it will soon become obvious that black has a dangerous
threat with 1...d3, which will either queen the d-pawn
or distract white’s c-pawn, thus allowing black to queen
his own c-pawn. Because of the above drawing chance
for black, white’s only hope lies in queening one of its
pawns on the b-file. To achieve this, white has to con-
quer the square a6. However, he has no moves that
put black into zugzwang, because black can answer all
white king moves with king moves b7-a8-b7. A typi-
cal maneuver in such position is the so-called triangle
maneuver, where one king is able to use a 3-cycle to
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return to its original square, while the other king is
only able to make a 2-cycle. White can therefore try
to move its king to el, playing el-f2-f1-el, which would
gain one move. When the white king returns to a5, we
will have exactly the same position, but with black to
move. As he cannot move his king because of white’s
threat Ka6, he has to move one of his pawns. Then the
entire sequence is repeated 11 times until black has no
more pawn moves and has to answer 254. Kab with
Kc8 thus allowing Ka6, followed by a mate in 15.

Trained chess players could solve this problem in
their heads (maybe with the exception of the final mate
in 15). However, because of their lack of high-level
chess-specific concepts and general problem-solving
knowledge, this problem is very hard for current com-
puter chess programs, as the solution is too deep to
be found with exhaustive search. A brief experiment
that we have conducted with FrR1TZ4 has demonstrated
that FriTz will play Bb1 to prevent black from playing
Pd3, bring its king to al, Ba2, king to el, Bbl, and fi-
nally move the king to f2 in order to capture the pawn
on f3. It does not realize that black then has an easy
draw by trading its knight for the bishop and playing
Pf6-f5 thereafter.

On the other hand, the second position is quite hard
for human chess players, because it does not offer many
familiar patterns which could be used for narrowing
down the search (at least not for chess players that are
untrained in the solving of chess problems). The pieces
seem to be randomly scattered around the board, thus
offering no orientation at all. The only obvious feature
is the lack of king safety, so that white should be much
better off and probably has a mate in a few moves.
However, it is not easy for a human player to find the
optimal move (1.Rg3!). In particular, he would more
or less have to perform an exhaustive search through
the numerous possible threats. On the other hand, po-
sitions like these are no different to other positions for
a computer chess playing program, which would find
the mate in 2 quite easily. In fact, computer chess
programs can be expected to play from randomly gen-
erated position equally well as from positions that typ-
ically arise in a chess game. The reason for this is that
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Figure 1: A knowledge-rich and a knowledge poor problem.

these algorithms are not modeled after human mem-
ory and thus do not have to rely on the recognition of
familiar concepts on the board. Instead their search
algorithms are tailored to be efficiently executable on
computer hardware.

In this paper, we try to argue that research in Al has
diverged into two branches that in an intuitive sense
correspond to the two approaches sketched above: On
the one hand, the what one might call cognitive branch
of Al puts a strong emphasis on the psychological va-
lidity of computational models, in particular with re-
spect to knowledge representation and memory orga-
nization. On the other hand, the engineering branch
of Al is motivated by solving particular tasks, and is
mostly concerned with finding formalizations and soft-
ware architectures for particular problems that can be
efficiently executed on computer hardware. We illus-
trate this split of Al into two different branches by clas-
sifying research in the domain of chess along two dif-
ferent axes: human-compatible knowledge (HCK) and
machine-compatible processing (MCP). We further ar-
gue on the example domain of chess that the successes
of Al research can be found along the two axes, but
have not yet penetrated into the white area which we
consider to contain the core problems of AI. We then
ask the question why this is the case, and present a
hypothesis to resolve this issue.

Human-compatible knowledge

Chess is probably the game that has been most deeply
investigated from a theoretical point of view. Chess
books are full of comprehensible knowledge about dif-
ferent aspects of the game. We would like to call
such knowledge human-compatible, because it enables
a chess student to increase his understanding and com-
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petence of the game. Nevertheless, it is mostly un-
clear how the student uses this knowledge for problem-
solving,.

Human subjects are often able to specify the ab-
stract concepts they use for problem-solving, but are
unable to specify the problem-solving process in an
exact algorithmic way. For example, a chess player
has no problems to explain the reasoning that made
him prefer a certain move over other possible con-
tinuations. Analyses like “The move b4 gives me
a backward pawn on c¢3, but it prevents black lib-
eration with a5, so that I can attack his weak a6-
pawn on the half-open a-file.” are full of abstract
concepts like backward pawn, half-open file, etc. that
are well-understood by human players. However, it is
comparably difficult for human players to specify the
thought processes that made them prefer, e.g., the op-
ponent’s weak a6-pawn over their own backward pawn
on c3. Research in chess psychology (deGroot 1965;
Chase & Simon 1972; Holding 1985; deGroot & Go-
bet 1996) has extensively analyzed verbal thinking-
aloud protocols of chess players of different strengths.
The results are that differences in playing strength be-
tween experts and novices are not so much due to
differences in the ability to calculate long move se-
quences, but to the use of a library of chess patterns
and accompanying moves and plans that helps them
choose the right moves for deeper investigations. Sev-
eral authors have even tried to measure the magnitude
of this pattern library, resulting in estimates in the
range of 5,000 to 10,000 patterns (Simon & Chase 1973;
Hayes 1987). Some of these so-called chunks® are easy

!Recent research has extended the chunking theory with

so-called templates (Gobet & Simon 1996), i.e., long-term-
memory structures that are quite similar to scripts and



to articulate and common to most chess players (like,
_ e.g., passed pawn, skewer, minority attack), while oth-
ers are presumably subconscious and subjective to in-
dividual players. However, even simple concepts like a
knight-fork are non-trivial to formalize.2

Because of this strong focus on models for mem-
ory organization, early Al research has concentrated
on the simulation of aspects of the problem-solving
process that are closely related to memory, like per-
ception (Simon & Barenfeld 1969) or retrieval (Simon
& Gilmartin 1973). Recently, these ideas were re-
investigated and integrated into the CHREST program
(Gobet 1993), which is the most advanced computa-
tional model of a human’s chess players memory orga-
nization. CHUMP is a variant of this program that is
actually able to play a game by retrieving moves that
it has previously associated to certain chunks in the
program’s pattern memory (Gobet & Jansen 1994).

Machine-compatible Processing

Al has soon recognized the difficulty of formalizing hu-
man thought in a top-down way (using the human con-
cepts as a starting point), and has instead discovered
approaches to solving intelligent tasks, which are more
closely modeled after the processing capabilities of a
computer. Brute-force chess programs are the best-
known example of this line of research. The basic idea
of brute-force chess programs dates back to (Shannon
1950) and (Turing 1953), where one can already find
many of the ideas that are still used in today’s chess
programs (like, e.g., search extensions). However early
chess programs (see (Newell, Shaw, & Simon 1958) for
an overview) relied on highly selective search on a few
basic concepts like material balance, center control, and
king safety. This selective search was motivated by
both hardware limitations and the attempt to model
machine chess playing on human chess playing.

However, the somewhat unexpected .success of the
TECH program (Gillogly 1972) for the first time
demonstrated the power of brute-force computing.
Further improvements (Slate & Atkin 1983) and the
advances in parallel processing (Hyatt, Gower, & Nel-
son 1985) and chess-specific hardware (Condon &
Thompson 1982; Ebeling 1987; Hsu 1987) have even-
tually lead to the Deep Blue vs. Kasparov challenge,
where a computer for the first time won a tournament
game against the reigning human chess world cham-
pion.

frames, but are based on a detailed psychological model
(deGroot & Gobet 1996). For our discussion, the differ-
ences in the details of the psychological models of chunks
and templates are irrelevant.

2The basic pattern for a fork is a protected knight
threatening two higher-valued pieces, like, e.g., rook and
queen. However, this simple pattern might not work if the
forking knight is pinned. But then again, maybe the knight
can give a discovered check...
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Two Dimensions of AI Models

The success of brute-force programs is attributable
to the fact that their basic architecture is adapted
to what computers are good at: fast calculation us-
ing only a few isolated chess concepts, which can
be evaluated efficiently. Thus the success of these
programs depends on machine-compatible processing
(MCP). On the other hand, we have seen that human
chess players calculate relatively few moves, but rely
on a huge pattern library that helps them select the
right move. Thus, their success depends on the avail-
ability of human-compatible knowledge (HCK). In the
following, we classify AI models of the domain of chess
with respect to their contribution along either axis.

A perfect chess program that has access to the per-
fect game-theoretic values of each position (e.g., by ex-
haustive search until check-mate) would be on the right
end of the MCP axis with no contribution on the HCK
axis, as its internal knowledge representation does not
contribute in any way to a better understanding of hu-
man reasoning. The best-known approximation of this
principle is the Deep Blue chess program. The other
extreme would be an oracle that could derive the best
move in each position from general principles and ex-
plain this choice in a clear and understandable form.
Chess theory can be viewed as an attempt to formalize
this knowledge in an understandable way and, in some
sense, Garry Kasparov can be viewed as a machine that
embodies this knowledge.

A project like CHUMP (see above) is strongly mo-
tivated by human memory organization, and its pro-
cessing is not very compatible with typical computer
hardware. For example, the program uses artificial
simulations of human long-term and short-term mem-
ory. Therefore, it has only made a small step along
the MCP axis. Its contribution along the HCK axis is
higher, but it is clearly a simplification compared to
human memory organization. As a sort of dual exam-
ple, consider PARADISE (Wilkins 1980), which is a
program for solving chess combinations at an abstract
level. The main goal of this project was to investigate
the extent to which tree search can be guided and con-
trolled with the use of background knowledge (Wilkins
1982). The used concepts are quite abstract and clearly
motivated by human knowledge, but the processing is
still very machine-compatible, using a systematic best-
first search in the space of possible plans.

We view Artificial Intelligence as a science that tries
to integrate both aspects: human-compatible knowl-
edge and machine-compatible process definitions. An
Al project can be evaluated by its contribution along
either axis. Figure 2 positions the “chess models”
discussed in the previous paragraphs in this two-
dimensional field. We view the overall value of a model
as the sum of the contributions that it makes along ei-
ther axis. Intuitively, for a chess program, this value
measures the program’s competence in terms of play-
ing strength and explanatory power.
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Figure 2: Models of chess playing classified along
the two dimensions of human-compatible knowledge
(HCK) and machine-compatible processing (MCP).

A research program appears as a line progressing
through this two-dimensional space. The ideal AI re-
search program should follow the diagonal between
the two axes, thus taking into account both aspects

equally. The further a research program deviates from

this diagonal, the less we are inclined to call it research
in Al Clearly, the progress in chess theory (which
moves along the HCK axis) can hardly be regarded
as part of Al, because of its lack of MCP. Likewise,
we think that a certain minimum amount of human-
compatible knowledge is required for a computer pro-
gram to qualify as Al. Along this dimension, the de-
velopment that has led to Deep Blue, in our opinion,
is at the lower border of Al research, if not beyond.
The example of chess shows us that research has split
into two streams: One that proceeds close to the HCK
axis and is concerned with a deeper understanding of
human problem solving and the domain knowledge on
which it relies. The other stream is concerned with
the development of faster and better algorithms and
hardware heading for an exhaustive search. The little
work that has been done in the white area inbetween
has only been moderately successful in terms of our
combined measure. We believe that this divergence
can also be found in other areas of Al like Machine
Learning or Natural Language Understanding. Appar-
ently, progress along the axes faces less resistance than
progress along the diagonal. The question is “Why?”.

A Hypothesis on Research Effort

We interpret figure 2 in the way that moving towards
a better model (in terms of the overall value defined
above) requires more effort if this improvement in value
is made along the diagonal than if one proceeds along
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Figure 3: The discrepancy between a class of models
that are equal in effort and a class of models that are
equal in value.

one of the axes. We think that the effort that is nec-
essary to proceed a step along one axis is proportional
to the progress that has already been made along the
other axis. Only in the special case of a research pro-
gram that proceeds along a single dimension (as e.g.
the research in computer chess) will the increase in ef-
fort be proportional to the increase in value. This leads
us to the following hypothesis:

The total effort that has to be spent on an Al
problem is proportional to the product of the val-
ues along the axes HCK and MCP.

As an illustration consider the curve depicted in fig-
ure 3, which shows a line of Al problems which require
the same effort, i.e., problems for which the area of
the rectangle spanned by the co-ordinates is constant.
We believe that the status quo of Al research could be
described with such a curve. Relatively few progress
has been made along the diagonal, while considerable
progress has been made along the axes. On the other
hand, consider the line which depicts a class of AI mod-
els sharing the same overall value. According to our
hypothesis, there is a noticeable discrepancy between
these two graphs. There is a difference between the
value of an Al model and its required effort.

From these deliberations follows that HCK and
MCP cannot be treated independently. A possible
way how they are interrelated can be derived within
the theory of semantic networks. This theory seems
adequate for this task. On the one hand, semantic
networks are a psychological model of human mem-
ory organization and, on the other hand, have had a
considerable influence on Al research.

A semantic network consists of nodes and links that
connect such nodes. The nodes are to be understood as



representations of basic concepts like objects or prop-
erties, whereas the links represent relations between
these concepts. The resulting structure is a model of
human semantic memory organization. Processing in
such a semantic network is guided by the links (either
in the form of explicit rules or by spreading activation).
When there are sparse links between nodes that form
a linear and mostly hierarchical structure, computa-
tion will be quick and easy. When the link structure
is dense and cyclic, computation becomes problematic
due to circularity and to the exponential growth in the
number of possible paths. Thus processing depends
on the number and the structure of the links in the
network. :

Classical semantic memory models (Collins & Quil-
lian 1969; Anderson 1976) rely on the power of hierar-
chical, sparse network structures, but there is strong
critique on this situation. In (Klimesch 1994) Klimesch
argues that these conceptions are misleading and he
shows that they contradict important experimental
data. He instead pleads for highly interconnected and
cyclic memory structures in the following sense: The
more connections a concept is associated with, the
more meaningful is that concept. The expert who re-
ally understands what he is doing and who can apply
his knowledge in most different situations has a much
more interconnected memory structure than the begin-
ner who just learned some strict rules. The interest-
ing thing is that human memory performance becomes
better and quicker with increasing connectivity of con-
cepts, which is exactly the reverse for computational
processes.3

In the formalism of semantic networks, we can define
indicators for HCK and MCP: HCK is high when the
link-to-node ratio is high as is given in interconnected
and cyclic structures. On the contrary, MCP is high

when the node-to-link ratio is high as is given in sparse -

and linear structures. This construction makes the de-
pendency of the two dimensions explicit by reducing
them to more basic concepts.

Steps towards a Re-~unification of Al

We take the quotation preceding our paper as an intu-
itive definition of the goal of AI. The goals expressed
in this statement are on the one hand to produce in-
telligent behavior in the form of a “successful chess
machine” and, on the other hand, to “penetrate to
the core of human intellectual endeavor”. However,
the development of Al research, in particular in the
domain of chess, has shown that the latter is not an
immediate consequence of the former. Achieving func-
tionality does not necessarily increase the understand-
ing of how we achieve this functionality. We think

3One of the authors made extensive experience with this
and other facettes of problematic computability of intercon-
nected structures when simulating Klimesch’s model in his
diploma thesis {Winkler 1991).
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the original motivation of research in computer chess,
namely “merely” to build a successful chess machine,
has to be replaced with different goals that require a
reconciliation of machine-compatible processing with
human-compatible knowledge. However, according to
our hypothesis, we cannot expect this to be easy. In
the following we would like to give a few examples for
rewarding and challenging tasks in the domain of com-
puter chess.

A very rewarding task would be the development of
a computable vocabulary of chess concepts in which
chess knowledge can be formulated. The character-
istics such a representation formalism has to incor-
porate are that it has to be sufficiently expressive
for formulating abstract strategic concepts, that it
has to be extensible and can be easily understood
by a user (HCK), and that it can be efficiently im-
plemented (MCP). The need for such formalisms has
been recognized early in computer chess research. (Zo-
brist & Carlson 1973) describes an advice-taking chess

~ program which aimed at allowing a chess master to

“advice” a playing program in terms of this lan-
guage. Many formalisms have subsequently been de-
veloped in the same spirit (Bratko & Michie 1980;
George & Schaeffer 1990), most of them limited to cer-
tain endgames (see (Michie & Bratko 1991) for a bib-
liography). A recent promising step into the right di-
rection can be found in (Donninger 1996), which intro-
duces a very efficient interpreter of an extensible lan-
guage for expressing certain characteristics of a board
position. However, the expressiveness of the language
is currently limited to propositional logic, a trade-off
that had to be made because of efficiency considera-
tions and the ability to provide a graphical interface
that also allows untrained users to formulate rules.

Another promising field for further research could
be the discovery of understandable knowledge in chess
endgame databases with the goal of enriching chess
theory. Consider, for example, Ken Thompson’s im-
pressive work on five-men endgame databases, which is
now publicly available on three CD-ROMs. The use of
these disks allow chess programs to perfectly play the
encoded endgames. However, many of these endgame
databases are not thoroughly understood by human
experts. The most famous example are the attempts
of grandmasters to defeat a perfect KQKR database
within 50 moves or the attempt of an endgame spe-
cialist to defeat a perfect database in the “almost
undocumented and very difficult” KBBKN endgame
(Roycroft 1988). GM John Nunn’s effort to man-
ually extract some of the knowledge that is implic-
itly contained in these databases resulted in a series
of widely acknowledged endgame books (Nunn 1992;
1994b; 1995), but Nunn readily admitted that he does
not yet understand all aspects of the databases he an-
alyzed (Nunn 1994a). It would be rewarding to de-
velop algorithms for automatically discovering playing
strategies for such endgames (see (Muggleton 1988)



and (Firnkranz & De Raedt 1997) for some prelim-
inary work). A particularly hard problem is that
human-compatible strategies are typically simple, but
not necessarily optimal in the sense that they require a
minimum number of moves. For a machine, it is non-
trivial to decide which suboptimal moves contribute
to some global progress (and are thus part of a use-
ful strategy) and which suboptimal moves do not im-
prove the position. An attempt to automatically dis-
cover a simple playing strategy for the KRK endgame
might easily produce the simple strategy “always move
your rook away from the enemy king” which will al-
ways result in a won position (at least for the next
49 moves), but clearly make no progress towards the
goal of mating the opponent’s king. Other tasks that
could be automatized include the discovery of open-
ing theory mistakes, the automatic detection of par-
ticularly promising or unpromising line-ups or middle-
game plans in certain types of openings, and many
more. One can even imagine facilities that support
tournament preparation by analyzing game databases
with the aim of unearthing characteristics of the style
of individual players and for studying their weaknesses
and strengths.

Another obvious point, where chess knowledge
would be of considerable importance, and probably
the point with the highest commercial potential is
the use of high-level chess knowledge in educational
chess programs. For example, imagine a program
that analyzes a certain position or an entire game
on an abstract strategic level, tries to understand
your opponent’s and your own plans, and provides
suggestions on alternative ways to proceed. Some
commercial programs already provide such capabili-
ties, but at a very preliminary level that usually is
only able to detect tactical, but not strategic mis-
takes. The ICCA has recognized the potential of
such programs, and has created the The Best Anno-
tation Award which will be awarded annually for the
best computer-generated annotation of a chess game.*
However, the competition suffers from a considerable
lack of participants. Some preliminary work on us-
ing case-based reasoning for a strategic analysis of a
given chess position can be found in (Kerner 1994;
1995).

Last but not least, we also believe that additional
knowledge can increase the playing strength of current
chess programs. However, the motivation to investi-
gate such approaches has significantly declined with
the somewhat unexpected success of brute-force pro-
grams. In the Introduction, we have already illustrated
the weakness of brute-force chess programs in cer-
tain endgame positions that require abstract problem-
solving and chess-specific knowledge. For some prelim-
inary ideas incorporating strategic long-term knowl-
edge into conventional chess programs see (Kaindl

4See ICCA Journal 15(4):235-236, 1992.
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1982; Opdahl & Tessem 1994; Donninger 1996). How-
ever, we are also of the opinion that some of the early
approaches to selective search need a re-evaluation in
the light of the development of Al in the last 25 years.

Conclusion

In this paper, we described research in Al, in par-
ticular in the chess domain, along two axes, human-
compatible knowledge and machine-compatible pro-
cessing. In this framework it became apparent that Al
research has diverged into two streams that proceed
along these axes, while we believe that the core of Al
lies along the diagonal. For us, the reason of this de-
velopment is that the effort of combining both aspects
is considerably harder than the one-dimensional en-
deavors, and we have offered a hypothesis on research
effort that could explain this observation. It follows
that these aspects cannot be treated independently.

The development that has led to the Deep Blue vs.
Kasparov match and to the first game that a machine
has won against the human chess world champion has,
in our opinion, demonstrated that proceeding along the
“engineering” axis only, hard as it certainly has been,
is comparably easy. Consequently, we have proposed a
rewarding and challenging set of goals for research in
computer chess that concentrates on an integration of
knowledge and computability.
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