
A distributed system for genetic programming that
dynamically allocates processors

Matthew Evett and Thomas Fernandez
Dept. Computer Science ~z Engineering, Florida Atlantic University

Boca Raton, Florida 33431

{ matt,tfernand} @cse.fau.edu, http://www.cse.fau.edu/,-~matt

ABSTRACT

AGPS is a portable, distributed genetic pro-
gramming system, implemented on MPI. AGPS
views processors as a bounded resource and op-
timizes the use of that resource by dynamically
varying the number of processors that it uses
during execution, adapting to the external de-
mand for those processors. AGPS also attempts
to optimize the use of available processors by
automatically terminating a genetic program-

ming run when it appears to have stalled in a
local minimum so that another run can begin.

1 Introduction

Most distributed systems presuppose a fixed number of
processors during execution, though they might pro-
vide for this number to vary across distinct invoca-
tions. For example [15] and [10] describe systems that
determine at start-up the number of available proces-
sors and/or their relative speeds and modify their par-
titioning and load-balancing schemes to optimize the
use of these processors. The processors allocated to

these systems are either unavailable for other use dur-
ing execution, or cause other processes on the same
processors to suffer very poor performance. If these

systems have relatively lengthy execution times, then
the user may have to choose not to allocate all available
processors to the task so that some processors will be
available for other users later during the system’s run.
The processors may well go unused for the duration
of the system’s execution, while the system might well
have benefited from the use of those extra processors.
This is inefficient use of processor resources.

Genetic computation (which we use to describe ge-
netic programming and genetic algorithms) is noto-
riously computationally demanding. Many of the

most interesting applications involving genetic com-
putation can require hundreds of hours of CPU time.

Indeed, the results reported in this paper required
over 300 hours of CPU time (on Sparcstations) 
compile. Luckily, genetic computation is particularly
amenable to parallelization (it is "embarrassingly par-
allel"), which can ameliorate this computational cost
somewhat. Thus, a distributed genetic computation
system is exactly the type of system where maximiz-
ing the use of available processor resources without
monopolizing them is particularly important.

We have developed a system, AGPSl, for genetic
programming that runs on distributed and parallel
computing platforms through the use of MPICH[7],
an implementation of MPI (the Message Passing

Interface)[6]. There are other parallel or distributed
genetic computation systems (e.g. [1], [9]). But these
systems are designed to work within a fixed set of pro-
cessors. AGPS views processors as a bounded resource
and optimizes the use of that resource by dynamically
varying the number of processors that it uses during
execution, adapting to external demand for those pro-
cessors.

This paper outlines AGPS and its dynamic proces-
sor allocation mechanism and presents a performance

anMysis of the system. Section 2 briefly describes ge-
netic programming. Section 3 outlines AGPS and Sec-
tion 4 the processor allocation mechanism. Section 5

presents performance figures for AGPS. Section 6 de-
scribes on-going and future development of AGPS.

1 Adaptive Genetic Programming System

From: AAAI Technical Report WS-97-06. Compilation copyright © 1997, AAAI (www.aaai.org). All rights reserved. 



2 Genetic Programming

Genetic programming [11] (GP) is closely related to ge-
netic algorithms [8] (GA). Both are a form of adaptive
search. The adaptation mechanism is loosely based

on evolution in natural (genetic) systems. The system
initially contains a population of randomly generated
"prospective solutions" (population elements or indi-
viduals) to the problem to be solved. Each of these
individuals is represented by a "gene", which is (usu-
ally) a binary string in GAs and a Lisp-like s-expression
in GPs. The genetic system evaluates each of the ele-

ments via an evaluation function, similar to a heuristic
function in general search algorithms. The evaluation

function returns "high" values for those elements that
most nearly solve the given problem, and "low" values
for those elements that are far from the mark.

Genetic computation systems differ greatly in how

they handle the next few steps in processing popula-
tions, but the basic technique goes something like this:
there is a selection process wherein, typically, those ele-
ments with "high" value are more likely to be selected.
The end result of the selection process is a mating pool.
The system uses the elements of the mating pool to
create a new population, i.e., to form the next gen-

eration. Mating pool elements can either be directly
copied into the next generation (straight reproduction),
or can merge in some fashion with another element or
elements of the mating pool to form (usually) novel el-
ements (genes). This merging process is usually called
cross-over. The genetic computation proceeds itera-
tively for a predefined number generations, and these
generations comprise a run.

Under the right circumstances (these circumstances
are not completely understood, but the evaluation
function is particularly important, as is the property

that the merging of two high-value individuals has a
higher probability of yielding another high-value indi-

vidual than the merging of two random individuals),
because the mating pool always consists of relatively
better individuals, the population as a whole tends to
maximize its value over successive generations. If all
goes well, the genetic computation will yield a solution,
or near solution, to the given problem.

In general (and this is a very broad generalization),
GP systems tend to perform better the larger their
populations are. To a lesser extent, they perform bet-

ter the longer their runs are. Like neural networks, GP

systems don’t necessarily converge, or find a solution;
they may get stuck in a local minimum. Runs provide
a rather crude mechanism for dealing with these situa-
tions. When the system completes a run, it records the
best solution found during that run, and starts another
run, re-instantiating the population with a completely

random set of individuals/genes.

A fuller description of the techniques of genetic pro-
gramming is fax beyond the scope of this paper, but
the interested reader should see [11], [12], [2], or [13].

3 AGPS

AGPS provides for the execution of genetic program-
ming on distributed or parallel computational plat-
forms. It is based on a serial GP system described
elsewhere [5], and was implemented on MPI so that
it would be portable: AGPS runs on heterogenous
clusters of Unix workstations, tightly coupled MIMD
paxallel architectures like the SP-2, etc. AGPS is im-
plemented using G-Framework[3], an object-oriented
genetic framework written in C++ for building GA
and GP systems. When used to implement GPs the

system is similar to Koza’s Simple Lisp code [11].
ADF’s are not implemented in the current version of
G-Framework, but they may be included in future re-

leases. For more details on the analysis and design of

G-Framework see [3].
Except for its MPI basis and that it is implemented

in C++, AGPS is similar to the system by Niwa and
Iba [14] and to several distributed GA systems. The
global population is partitioned across the processors.
The literature refers to each such partition as an "is-

land" or "meme". Each processor acts mostly as a
stand-alone GP process, iterating over generations,

and treating its global subpopulation as a normal pop-
ulation. Occasionally (the frequency is set by the user),
the processors exchange some of their individuals. This
process is called "migration". AGPS provides mecha-
nisms for selecting the migrants, and the communica-
tion topology among the processors which specifies the
destinations of migrants.

AGPS deals with synchronization issues among the
processors in several ways. The system provides for
synchronous or asynchronous migration (i.e., migra-
tion occurs either after a fixed number of generations

by each processor, or migration may involve individu-
als from different generations.) AGPS can synchronize

44



the processors at run boundaries. If so, it can ter-
minate runs synchronously (all processors complete 
predefined number of generations) or asynchronously

(like synchronous, unless a processor discovers a so-
lution, in which case it notifies the other processors,

each of which will then terminate its run after finishing
their current generation.) Alternatively, the user can
not synchronize the processors at run boundaries, in
which case migrations may consist of immigrants and
emigrants being from different generations and differ-
ent runs.

As with other GP systems, the user can specify that
a run should terminate if "no apparent" progress is
being made (the definition of which is specified by 
user-supplied parameter). AGPS will then start an-

other run (after the usual process of determining the
active set), reinitializing the populations at each pro-
cessor.

AGPS implements migration through the use
MPICH’s send and receive message operators. These
are processor-to-processor communication operations.
Each message consists of a single string, representing
the migrant individuals. Details of this encoding are

in [4].
There are many issues relating to the efficacy of the

various strategies outlined above, and we are only now
beginning to examine them.

4 Processor Allocation

AGPS uses a straightforward mechanism for dynami-
cally allocating processors during execution. Because
AGPS is implemented on MPICH, the maximum set
of processors must be specified at start-up. This set
of processors is referred to as the eligible set. AGPS
maintains a a simple software agent on each element

of the eligible set. These agents use operating system
queries to determine the relative load on their host pro-

cessor. If the load is significantly greater than 1.0 (the
default threshold is 1.2), the agent considers its host

to be under external (to AGPS) demand.
At regular intervals (the default is during migra-

tion) called the allocation interval, the agents confer
to determine the set of processors that are not in de-
mand. This is called the active set (active in the sense
that they will be participating in subsequent gener-
ations.) The in-demand processors enter a quiescent
state through the use of a blocking message receive

operation (the MPI_recv operator in MPICH). In due
course, the AGPS processes on the quiescent proces-

sors are swapped to disk, effectively removing the CPU
load caused by AGPS on those processors.

At the start of the next allocation interval, the active
processors activate the quiescent processors by trans-

mitting a message to them that completes their block-
ing receive. The agents reevaluate their host’s load,
form the new active set, and the process continues.
Note that at least one processor must be active at all
times, else there won’t be a processor to activate all

the others at the next allocation interval.

After AGPS determines the active set, it must de-
termine the communication topology among the active
processors. AGPS uses this topology during migration.
Currently, AGPS only supports a ring communication
topology. MPICH provides each member of the el-

igible set with a unique integer identifier from 0 to
n - 1, where n is the size of the eligible set. Proces-
sors with lower identifiers (modulus n) are considered
to be to the "left", and those with higher numbers are
to the "left". During migration, processors communi-
cate with the nearest active processor on their left and
right. (If only one processor is active, these will be
the same.) During migration, each processor sends its
migrants to its nearest left and right active neighbors.
There are several ways to identify these neighbors that
involve iterative communication operations. AGPS in-

stead provides a complete definition of the active set to
every processor, and the processors then examine this

definition to identify their left and right active neigh-
bors.

AGPS uses the MPI_allReduce operator to compute

the active set. This operator is somewhat similar to
parallel prefix operators on some parallel architectures.

MPI_allReduce applies a given operator, o, across an
input value on each processor. Thus, if o is the addition
operator, the result will be the sum all the input values.
This result is provided to each processor.

In using MPl_allReduce, each processor’s input
value is a binary string, and the reduction operator

is a logical bitwise OR (the addition operator would
suffice, too). The input value for the processor of rank
r E {0, 1,..., n- 1), is the binary string consisting
of O’s everywhere except for bit r, which is 1 if the
processor wishes to participate in the active set, and

0 otherwise. Equivalently, the input value equals 2r.

The result of the reduction operator is a boolean string,

45



s, that defines the active set: if the rth bit is set, pro-

cessor r is in the active set. Each processor examines
the s to determine which processors are its nearest left
and right active neighbors.

5 Results

We tested AGPS on a problem domain similar to
Koza’s Simple Symbolic Regression problem described
in Section 7.3 of [11]. The AGPS attempts to dis-
cover a function (of two variables) that passes through

11 pairs of x and y coordinates. The target function
is y = z3 + 0.3x2 + 0.4x + 0.6. The fitness function
is the sum of the absolute differences in the depen-

dent variable (y) at 11 data points: the integers zero
through ten. The terminal set includes {z, ~} and the

function set includes the basic arithmetic functions,
{+,-,., %}. (~ is the ephemeral constant generator.)

The termination condition is 11 hits. Each of the 11
data points is considered a hit if the value of the in-
dividual evaluated at that data pointit is less than 0.1
away from the value of the target function at that data
point. All terminals, inputs and results of the functions
are double precision real numbers. We used an elitist

graduated over-selection strategy to select individuals
from the population for reproduction and crossover

(detailed in [5].)
AGPS was run for 5 sets of 100 runs on configura-

tions of 1, 2, 3, 4 and 5 processors. Figure 1 shows
the number of runs out of 100 that reached the ter-
mination criteria for each of the five sets. The results
suggest that the probability of a run being successful
increases with the number of processors used (and thus
the global population size). Furthermore the increase

may be super-linear. (A related form of super-linearity
was observed in [1].)

Figure 2 shows the average of the maximum number

of hits achieved by an element of the global population
(i.e. the populations of the processors combined). The
averages are taken across the 100 runs of each data
set. The results suggest that increasing the number of
processors leads to better performance; a larger global
population tends to lead toward a higher average of
hits per individual.

The conclusion that larger populations lead to bet-
ter GP performance is not, in itself, surprising. This
effect has been noted elsewhere (e.g. [11]). The inter-
esting feature here is that the effect is noticeable even

60

50

40

30

20

10

0
1 2 3 4 5

Processors

Figure 1: Percent (of 100) runs during which a solution

(11 hits) was found.

11

10

9

8

7

6

5
1 2 3 4 5

Processors

Figure 2:
achieved by an individual during a run.

Average of the maximum number of hits

46



when the population is distributed with only limited

interaction between the memes.

To measure the performance of AGPS’s dynamic
processor allocation we watched the load and process
queues on the processors in the eligible set during exe-
cution. To test that processors became quiescent dur-

ing times of heavy demand, we ran CPU intensive tasks
on eligible processors during AGPS runs. Investigation
of the process queues on those processors showed the
AGPS process was swapped to disk during heavy load.
We are in the process of conducting a more formal
performance analysis of AGPS’s allocation strategy.
We are making use of MPICH’s MPE library (provides
MPI profiling) toward that end.

6 Future Work

At the time of submission of this paper, we’ve been ex-
perimenting with AGPS for only a few months. Much
remains to be implemented and formally analyzed. We

outline just a few of those items here.

We are particularly interested in implementing a
more complicated mechanism for entering and exit-
ing an on-going AGPS process. Currently, the max-
imal set of processors that can participate in a run of
AGPS is fixed at start-up. It is impossible (without
restarting the whole system) later to add to the eli-
gible set a processor that was unavailable at start-up.

We are examining the feasibility of modifying AGPS
to permit the insertion of new processors into the eli-

gible set, and, conversely, to provide a mechanism for
processors to remove themselves from the eligible set.
Such a soluation would allow AGPS to provide flex-
ible processor allocation to those systems that might
not provide pre-emptive multitasking on all processors.
This may require some modification to MPICH, so we

are proceeding gingerly.

We are investigating more sophisticated techniques
of resource management. These techniques include
finer control of when processors can withdraw or enter
the active set, and load-balancing by dynamically ma-
nipulating meme size: processors that wait on others
for their immigrants slowly increase their meme size to

make better use of that wasted time in the future.

7 Conclusion

AGPS provides for efficient use of the bounded re-
source consisting of a set of available processors.
Though our performance analysis is only just begun,
AGPS seems to provide better performance as it makes

use of more processors. AGPS’s dynamic processor
allocation scheme provides a mechanism for making
maximal use of available processors without monopo-
lizing those processors for the long periods necessitated
by genetic computing systems.

References

[1]D. Andre and J. Koza. Parallel genetic program-

ming: a scalable implementation using the trans-
puter network architecture. Advances in Genetic
Programming, Vol II, 1996.

P. Angeline and K. Kinnear, editors. Advances in

Genetic Programming, Vol. II. MIT Press, Cam-
bridge, MA, 1996.

[3]T. Fernandez. Analysis and design of the evolu-
tion of strategy objects. Technical report, Florida
Atlantic University, 1997.

[4]T. Fernandez and M. Evett. Agps: a portable, dis-
tributed system for genetic programming. Tech-
nical report, Dept. Computer Science and Engi-
neering, Florida Atlantic University, 1997. To be
submitted as a late paper to GP-97.

T. Fernandez and M. Evett. The impact of train-
ing period size on the evolution of financial trad-

ing systems. In J. Koza, editor, GP-97, Proceed-
ings of the Second Annual Conference, 1997. to

appear.

[6]Message Passing Interface Forum. Mpi: A
message-passing interface standard. Technical re-

port, Computer Science Dept., University of Ten-

nessee, Knoxville, TN, 1994.

[7]W. Gropp and E. Lusk. User’s guide for mpich,
a portable implementation of mpi. Technical
Report ANL/MCS-TM-ANL-96/6, Argonne Na-
tional Laboratory, Mathematics and Computer

Science Division, 1996.

47



[8] J. Holland. Adaptation in Natural and Artificial
Systems. University of Michigan Press, Ann Ar-

bor, MI, 1975.

[9] H. Juill~ and J. Pollack. Massively parallel genetic

programming. Advances in Genetic Programming,
Vol II, 1996.

[10] M. Evett K. Stoffel and J. Hendler. A polynomial-
time inheritance algorithm based on inferential
distance. Technical report, Dept. Computer Sci-

ence and Engineering, Florida Atlantic University,
1997. Submitted to IJCAI97.

[11] J. Koza. Genetic programming: on the program-
ming of computers by means of natural selection.
MIT Press, 1992.

[12] J. Koza. Genetic programming II: Automatic
Discovery of Reusable Subprograms. MIT Press,
Cambridge, MA, 1994.

[13] J. Koza, editor. Genetic Programming 1996, Pro-
ceedings of the First Annual Conference, Cam-

bridge, MA, 1996. MIT Press.

[14] T. Niwa and H. Iba. Distributed genetic program-
ming: Empirical study and analysis. In J. Koza,
editor, Genetic Programming 1996, Proceedings

of the First Annual Conference, Cambridge, MA,
1996. MIT Press.

[15] Y. Xu and M. Evett. Parallelization of the
canal subsystem of the everglades landscape
model. Technical report, Dept. Computer Science,
Florida Atlantic Univ., February 1997.

48




