
Enhancements to the Ground Processing
Scheduling System *

Juan Jose Blanco and Lina Khatib
Computer Science

Florida Institute of Technology
Melbourne, F1. 32901

{jblanco,lina}@cs.fit.edu

Abstract

This research statement describes work in progress to
enhance the performance of the Ground Processing
Scheduling System (GPSS). The GPSS is a constraint-
based scheduler that, using an anytime algorithm,
deals with three kinds of constraints: temporal, re-
source, and configuration. It starts with a complete
schedule that may have some constraint violations
(conflicts) and gradually improves the schedule by re-
ducing the violations. The objective is to optimize the
schedule in terms of constraint violations and resource
utilization.

Introduction

The Ground Processing Scheduling System (GPSS) 
a constraint-based scheduler. It is used for assigning
times and resources to all the activities involved in
the maintenance, repair and preparation of the fleet of
Space Shuttles from the time one lands on the ground
until it is next ready to launch. The problem domain
is a very demanding one in which activities are con-
strained by resource limitations, configuration require-
ments, and temporal specifications.

Although the deployment of GPSS has been mainly
a success, we have identified certain areas that could be
enhanced. Through such enhancements, we provide a
way to test techniques applicable towards solving gen-
eral constraint satisfaction and scheduling problems.

Automatic scheduling in GPSS

Classical scheduling is the process of assigning times
and resources to the activities of a plan. A schedul-
ing problem can be naturally mapped into a constraint
satisfaction problem (CSP), where the values (times)
that the variables (activities) can take are constrained
by temporal relations and by the finite capacity of
the available resources. The complexity of classical
scheduling is greatly increased when the problem is

1An extended version of this paper was published by
IEEE as Proceedings of TIME97

extended to include configuration requirements and ef-
fects, i.e., certain activities requesting an attribute of
an object to be in a specified state and modifying such
a state when they are completed.

The Ground Processing Scheduling System (GPSS)
is a very large constraint-based scheduling assistant de-
veloped by Lockheed and NASA to aid in managing
the maintenance, repair, and preparation of the Space
Shuttle for a new mission. An orbiter processing flow
between missions takes, on average, between 1000 and
2000 tasks to be scheduled, for about 10,000 to 16,000
individual shifts of work, and with around 100 schedul-
ing changes made each day (Deale et. al. 94) 1994.
The sheer size of the problem is further complicated by
the need of accounting for configuration constraints, as
well as by a demanding domain.

The temporal reasoning involved is a two-fold pro-
cess involving, first, resolving predecessor-successor re-
lations between tasks, and second, performing a spe-
cialization of classical scheduling called fixed preemp-
tive scheduling. Fixed preemptive scheduling implies
making activities comply with a work calendar which
indicates when an activity can be scheduled.

All of the above account for the high degree of com-
plexity of the scheduling domain faced by GPSS. Such
complexity was the main obstacle the original design-
ers of the system encountered when pursuing a solu-
tion based on constructive, or systematic, constraint-
solving algorithms. These algorithms could require a
prohibitive amount of time to solve easy instances of
the problem (Zweben, Davis, and Deale 93). The
intractability and other characteristics of the domain
(such as high dynamism and requirement of reschedul-
ing, over-constrainedness, search for optimality) led
to the utilization of a repair-based, or stochastic ap-
proach.

GPSS Process

The GPSS provides a graphical interface for the user to
specify all input. Then, it performs a first stage of tern-

94

From: AAAI Technical Report WS-97-06. Compilation copyright © 1997, AAAI (www.aaai.org). All rights reserved. 



poral reasoning by satisfying all temporal constraints
among tasks. The Waltz algorithm (Waltz 75),
was modified to propagate temporal constraints and
achieve temporal constraint satisfaction with O(N2)

complexity, where N is the number of tasks.
As a second step of temporal reasoning, each ac-

tivity is broken into subtasks according to their work
calendar. This setting of tasks serves as the initial
assignment for the iterative algorithm to repair. Al-
though the assignment is complete, it is not by any
means valid since it contains resource and configura-
tion conflicts. The GPSS provides an interactive mode
that allows users to manually resolve constraint viola-
tions by moving tasks along the time line. Temporal
consistency is maintained after each move by running
the Waltz algorithm, and resource and attribute pro-
files are continuously updated and available to the user
through graphical output. The goal here is to enhance
the scheduling engine that performs automated conflict
resolution and optimization.

GPSS uses a hill-climbing method coupled with a
simulated annealing implementation to repair conflicts.
The user can select relevant resources to focus on and
determine the maximum time allotted for deconflic-
tion. Also, the user can choose to fix tasks in their
current time slot. During each iteration of the repair
algorithm, the following steps are taken:

1. Select a conflict (resource or configuration) to be re-
solved taking into account specified priorities.

2. Build a table of tasks involved in the unsatisfied
constraint (selected conflict). For each task, calcu-
late ten heuristic values that will aid in determining
which task to move for resolving the conflict.

3. The weighted sum of all heuristic values serves to
select the task to move forward or backward (fol-
lowing a typical hill-climbing approach). The Waltz
algorithm is run to satisfy all temporal constraints.
Note that although the move resolves the conflict
at hand, running Waltz to achieve temporal consis-
tency again may cause new resource and/or config-
uration constraint violations to arise.

4. Simulated annealing (Kirkpatrick, Gelatt, and Vec-
chi 83) is then used to obtain the next state. If the
move has caused an overall reduction in the number
of conflicts, it is accepted and the new state becomes
the initial state for the next iteration. But, unlike
pure hill-climbing techniques which reject moves to
higher-cost states, such moves are made in GPSS
with a certain probability to avoid the tendency of
stochastic CSP methods of becoming stuck in local
minima.

Enhancement of the GPSS scheduling
engine

This section describes the enhancements we propose
for the GPSS which affects the efficiency of its auto-
matic deconfliction process.

The deployment of GPSS into its operational envi-
ronment at KSC has been mainly a success since it was
first used in March 1992 for space shuttle Columbia’s
STS-50 flight. However, as its user community has
expanded and has relied on its results for delivering
daily schedules for the shuttle ground processing, there
has been a clear trend toward utilizing GPSS’s interac-
tive mode rather than the automatic scheduling engine.
The main reasons for this behavior follow.

I.

.

GPSS global improvement of schedules deviates
from the way human schedulers perform their work.
Rather than being interested in an overall good
schedule extending over the approximately 60 to 80
days a typical flow lasts, the high complexity and
dynamism of the environment makes a human ex-
pert want a conflict-free schedule for a selected pe-
riod of time (e.g., schedules are currently updated
and delivered to the OPF to account for the next
48 hours of work). GPSS does not allow such pref-
erence. Instead, the automatic deconfliction process
selects conflicting tasks randomly, from within the
whole time-line, and resolves conflicts in each itera-
tion. Hence, the algorithm may be spending a lot of
time to resolve constraint violations at the tail end of
the schedule which is currently of much less interest
to the user. A side effect of the difficulty for human
users to appreciate the "goodness" of such complex
and global schedules is the loss of confidence in the
computer’s result.

The automatic scheduling algorithm is quite slow;
resolving conflicts in such a complex environment
is a time consuming process for any algorithm, but
we believe some improvements can be made to the
scheduling engine to increase its efficiency.

Following the intention to resolve the above prob-
lems, we propose a series of enhancements to the cur-
rent implementation of GPSS.

Fencing capability

Adding a feature that allows the user to specify a tem-
poral window of interest on which to focus will greatly
increase the applicability of GPSS. Fencing techniques
are useful and applicable to any other scheduling sys-
tem with similar characteristics. The user could select
the time period for which he/she desires to obtain a

95



conflict-free schedule and GPSS should then concen-
trate on removing the conflicts occurring during that
period.

Improvement of activity selection for
deconfliction

GPSS resolves constraint violations (either resource or
configuration) by moving a task or a set of tasks in-
volved in the conflict to a new time period where the
conflict does not arise. There are basically two trends
in performing the selection of the task to move:

1. Use local heuristics. This is computationally cheap
but uninformed in the sense that they are mere
heuristics. This type of selection is used by GPSS.

2. Use a greater depth of repair or look-ahead knowl-
edge. For instance, the actual use of heuristics in
GPSS does not take into account the fact that mov-
ing a task will generally require moving several other
temporally dependent tasks when the Waltz algo-
rithm is re-applied. This may cause an increase in
constraint violations which has not been previously
calculated, and which may be worse than for other
tasks that scored lower in the heuristic evaluation.

It is not clear which of the methodologies is bet-
ter, since performing the more informed look-ahead
involves a computational overhead that may degrade
the scheduler if the cost is overly expensive. However,
this more knowledge- intensive technique assures that
each of the moves performed will actually yield the best
possible improvement in cost (Minton et. al. 92). 
intend to run tests in both ends of the scale. Based on
these studies, we will determine the optimal technique
for activity selection when deconflicting in the Space
Shuttle domain, extracting general conclusions about
the tradeoff between informedness versus speed in CSP
and scheduling problems.

Enhancement of the stochastic search
method

The main advantage of simulated annealing over other
stochastic search methods (pure Hill-climbing, Min-
conflicts, GSAT) is its ability to escape local minima
while searching, instead of having to re-start from a
new initial assignment. However, precisely the way
simulated annealing performs this jump-out has been
lately questioned by several authors. For instance, in
(Selman and Kautz 93), a performance comparison be-
tween a greedy GSAT and the annealing algorithm led
to the conclusion: "much of the effort expended by sim-
ulated annealing in the initial high temperature part
of the schedule is wasted".

Given that the benefits that simulated annealing
brings are doubtful and there is no formal guide to
its application, we propose to apply in GPSS a totally
greedy algorithm to improve the cost of the current
solution when possible, and to rely on a procedure to
escape local minima only when one is reached. A vari-
ant of the breakout method (Morris 93) is one such
technique we intend to experiment with.

Summary

In this research statement we put forth several en-
hancements to the current version of the Ground
Processing Scheduling System (GPSS). Such enhance-
ments will significantly improve its efficiency and us-
ability by human schedulers. The enhancement is done
by improving currently used algorithms and heuristics
and by adding the extra feature of fencing. The fencing
capability adds the flexibility of obtaining an optimal
sub-schedule within a specified period of time.

References

M. Deale, M. Yvanovich, D. Schnitzius, D. Kautz, M.
Carpenter, M. Zweben, G. Davis, and B. Daun, 1994.
The Space Shuttle Ground Processing Scheduling
System. Intelligent Scheduling, edited by M. Zweben
and M. Fox, Morgan Kaufmann Publisher, pp. 423-
449.

S. Kirkpatrick, C. Gelatt, and M. Vecchi, 1983. Op-
timization by Simulated Annealing. Science, vol. 220
~4598.

S. Minton, M. Johnston, A. Philips, and P. Laird,
1992. Minimizing conflicts: A Heuristic Repair
Method for Constraint Satisfaction and Scheduling
Problems. Artificial Intelligence, vol. 58, pp. 161-205.

P. Morris, 1993. The breakout method for escaping
from local minima. Proceedings of AAAI-93, pp. 40-
45.

P. Selman and H. Kautz, 1993. An Empirical Study
of Greedy Local Search for Satisfiability Testing. Pro-
ceedings of AAAI-93, pp. 46-51.

D. Waltz, 1975. Understanding line drawings of scenes
with shading. The Psychology of Computer Vision,
edited by P. Winston, McGraw-Hill.

M. Zweben, E. Davis, and M. Deale, 1993. Iterative
repair for scheduling and rescheduling. IEEE Sys-
tems, Man, and Cybernetics, Special issue on Plan-
ning, Scheduling, and Control.

96




