
GenSAT: A Navigational Approach

Yury Smirnov Manuela M. Veloso
School of Computer Science
Carnegie Mellon University
Pittsburgh, PA 15213-3891
{smir, mmv}@cs.cmu.edu

Abstract

GenSAT is a family of local hill-climbing procedures
for solving propositional satisfiability problems. We
restate it as a navigational search process performed
on an N-dimensional cube by a fictitious agent with
limited lookahead. Several members of the GenSAT
family have been introduced whose efficiency varies
from the best in average for randomly generated prob-
lems to a complete failure on the realistic, specially
constrained problems, hence raising the interesting
question of understanding the essence of their different
performance. In this paper, we show how we use our
navigational approach td investigate this issue. We
introduce new algorithms that sharply focus on spe-
cific combinations of properties of efficient GenSAT
variants, and which help to identify the relevance of
the algorithm features to the efficiency of local search.
In particular, we argue for the reasons of higher ef-
fectiveness of HSAT compared to the original GSAT.
We also derive fast approximating procedures based
on variable weights that can provide good switching
points for a mixed search policy. Our conclusions are
validated by empirical evidence obtained from the ap-
plication of several GenSAT variants to random 3SAT
problem instances and to simple navigational prob-
lems.

Introduction
Recently an alphabetical mix of variants of GSAT (Gu
1992; Selman et al. 1992) has attracted a lot of at-
tention from Artificial Intelligence (AI) researchers:
TSAT, CSAT, DSAT, HSAT (Gent & Walsh 1993;
Gent & Walsh 1995), WSAT (Selman et al. 1994),
WGSAT, UGSAT (Frank 1996) just to name few. All
these local hill-climbing procedures are members of the
GenSAT family. Propositional satisfiability (SAT) 
the fundamental problem of the class of NP-hard prob-
lems, which is believed not to admit solutions that are
always polynomial on the size of the problems. Many
practical AI problems have been directly encoded or
reduced to SAT. GenSAT (see Table 1) is a family 
hill-climbing procedures that are capable of finding sat-
isfiable assignments for some large-scale problems that
cannot be attacked by conventional resolution-based
methods.

procedure GenSAT (~)
for i:=l to Max_Tries

T:= initial(Z)
for j:=l to Max_Flips

if T satisfies E then return T
else poss-flips := hill-climb(Z, T)

; compute best local neighbors of T
V := pick(poss.flips) ; pick a variable
T := T with V’s truth assignment inverted

end
end

return "no satisfying assignment found"

Table 1: The GenSAT Procedure.

GSAT (Gu 1992; Selman et al. 1992) is an in-
stance of GenSAT in which initial (see Table 1) gener-
ates a random truth assignment, hill-climb returns all
those variables whose flips 1 give the greatest increase
in the number of satisfied clauses and pick chooses one
of these variables at random (Gent ~: Walsh 1993).
Previous work on the behavior of GSAT and similar
hill-climbing procedures (Gent & Walsh 1993) iden-
tified two distinct search phases and suggested pos-
sible improvements for GenSAT variants. HSAT is
a specific variant of GenSAT, which uses a queue to
control the selection of variables to flip 2. Several re-
search efforts has attempted to analyze the dominance
of HSAT compared with the original GSAT’for ran-
domly generated problem instances. We have devel-
oped a navigational search framework that mimics the
behavior of GenSAT. This navigational approach al-
lows us to re-analyze the reasons of higher effective-
ness of HSAT and other hill-climbing procedures by
relating it to the number of equally good choices.
This navigational approach also suggests strong ap-
proximating SAT procedures that can be applied effi-
ciently to practical problems. An approximation ap-
proach can be applied to both "easy" and "hard"

iFlip is a change of the current value of a variable to
the opposite value.

~See Section 3 for the definition of HSAT.

103

From: AAAI Technical Report WS-97-10. Compilation copyright © 1997, AAAI (www.aaai.org). All rights reserved. 



P

1.0

0.5

1234.3 67
L/N

Figure 1: The transition phase for random 3SAT prob-
lems.

practical problems, in the former case it will likely
to produce a satisfiable assignment, whereas in the
latter case it will quickly find an approximate solu-
tion. For a standard testbed of randomly generated
3SAT problems, the transition phase between "easy"
and "hard" problem instances corresponds to the ra-
tio value of 4.3 between the number of clauses L to
the number of variables N (Mitchell et al. 1992;
Crawford & Auton 1993). Figure 1 demonstrates the
probability of generating a satisfying assignment for
random 3SAT problems depending on the L/N-ratio.

An approximate solution can be utilized in prob-
lems with time-critical or dynamically changing do-
mains. Interestingly, we found that it also provides
a good starting point for a different search policy, i.e.
serves as a switching point between distinct search poli-
cies within the same procedure. Such an approach can
be utilized beneficially in multi-processor/multi-agent
problem settings.

Our experiments with randomly generated 3SAT
problem instances and realistic navigational problems
confirmed the results of our analysis.

GenSAT as an Agent-Centered Search
State spaces for boolean satisfiability problems can
be represented as N-dimensional cubes, where N is
the number of variables. We view GSAT and simi-
lar hill-climbing procedures as performing search on
these high-dimensional cubes by moving a fictitious
agent with limited lookahead. For efficiency reasons,
the majority of GSAT-like procedures limit the looks-
head of the agent to the neighbors of its current state,
i.e., to those vertices of the cube that are one step far
from the current vertex. An edge of the cube that
links two neighboring vertices within the same face of
the cube, corresponds to the flip of a variable. Thus,
we reduced the behavior of GSAT to agent-centered
search (Koenig 1995) on a high-dimensional cube. Re-
call, in agent-centered search the search space is ex-
plored incrementally by an agent with limited looks-
head. Throughout the paper we refer to this naviga-

tional version of GenSAT as to NavGSAT.
The worst-case complexity of both informed and un-

informed agent-centered search is of the order of the
number of vertices, i.e. o(2N). Moreover, unlike clas-
sical AI search where A* is an optimal informed algo-
rithm for an arbitrary admissible heuristic, there are
no optimal algorithms for agent-centered search prob-
lems(Smirnov et al. 1996). Furthermore, even a con-
sistent, admissible heuristic can become misleading,
and an efficient informed agent-centered search algo-
rithm can demonstrate worse performance than the un-
informed (zero heuristic) version of the same algorithm
(Koenig & Smirnov 1996).

From the algorithmic point of view, the behavior of
LRTA* (Korf 1990), one of the most efficient agent-
centered search methods, is close to NavGSAT’s be-
havior. Both methods look for the most promising
vertex among neighbors of the current vertex. In ad-
dition to selecting a neighbor with the best heuristic
value, LRTA* also updates the heuristic value of the
current vertex (see Table 2). The efficiency of LRTA*
depends on how closely the heuristic function repre-
sents the real distance (Smirnov et al. 1996). The
vast majority of GSAT-like procedures use the num-
ber of unsatisfied (or satisfied) clauses as the guiding
heuristic. In general, this heuristic is neither consis-
tent, nor admissible. However, for the most intricate
random instances of SAT problems with L = O(N),
this heuristic is an O(N) approximation of the real
distance. Therefore, e-search (Ishida & Shimbo 1996),
a modification of LRTA* that uses approximations of
admissible heuristics, applies to SAT problems.

procedure LRTA*(V, E)
Initially, F(v) := h(v) for all v E V.
LRTA* starts at vertex v0t~rt:

1. v := the current vertex.
2. If v E Goal, then STOP successfully.
3. e := argmineF(neighbor(v, e)).
4. F(v) := max(F(v), 1 + F(neighbor(v, 
5. Traverse edge e, update v := neighbor(v, e).
6. Go to 2.

Table 2: Learning Real-Time Algorithm (LRTA*).
LRTA* also looks for the most promising vertex among
neighbors of the current vertex.

Lemma 1 After repeated problem-solving trials of a
soluble propositional satisfiability problem with N vari-
ables and O(N) clauses, the length of the solution 
e-search converges to O(N2).

Proof: After repeated problem-solving trials the
length of a solution of e-search converges to the length
of the optimal path multiplied by (1 + e) (Ishida 
Shimbo 1996). On one hand, the length of the opti-
mal path for a soluble propositional satisfiability prob-
lem is O(N). On the other hand, for problems with

104



L = O(N) approximating factor e is also O(N). These
two facts imply O(N2) complexity of the final solution
after an unknown number of repeated trials. ¯

Even though the length of a solution of e-search con-
verges to O(N2) for soluble problem instances, several
initial trials can have exponential length. Thus, this
approach can be applied only in special circumstances:
One is provided possibly exponential memory and pos-
sibly exponential time for pre-processing to re-balance
the heuristic values, then the complexity of solving of
the pre-processed problem is O(N2). Since this sce-
nario is not always what AI researchers keep in mind
when applying GenSAT, we do not consider e-search
as a general navigational equivalent of GenSAT. How-
ever, in Section 3 we show that one (first) run of 
search coincides completely with the run of HSAT for
the majority of soluble SAT problem instances.

Thus, the question of the efficiency of GSAT and
similar procedures is reduced to the domain-heuristics
relations that guide agent-centered search on an N-
dimensional cube. Recent works on changing the usual
static heuristic - the number of unsatisfied (satisfied)
clauses - to the dynamic weighted sums (Frank 1996)
produced another promising sub-family of GenSAT
procedures. Our experiments showed that the "qual-
ity" of the usual heuristic varies greatly in different
regions of the N-dimensional cube, and as the ratio
of L to N grows, this heuristic becomes misleading in
some regions of the problem’s domain. These experi-
ments identified the need to introduce novel heuristics
and better analysis of the existing ones.

New Corners or Branching Factor?

We conducted a series of experiments with the e-search
version of LRTA* and the number of unsatisfied clauses
as the heuristic values for each vertex (corner) of the
N-dimensional cube. We found that the combination
of a highly connected N-dimensional cube and such
prior knowledge forces an agent to avoid vertices with
updated (increased in step 4) heuristic values. Exactly
the same effect has been achieved by HSAT - a variant
of GenSAT. In HSAT flipped variables form a queue,
and this queue is used in pick to break ties in favor of
variables flipped earlier until the satisfying assignment
is found or the amount of flips has reached the pre-set
limit of Max_Flips. Thus, e-search is a navigational
analogue of HSAT for soluble problem instances.

Previous research identified two phases of GenSAT
procedures: steady hill-climbing and plateau phases
(Gent & Walsh 1993). During the plateau phase these
procedures perform series of sideway flips keeping the
number of satisfied clauses on the same level. The re-
duction of the number of such flips, i.e. cutting down
the length of the plateau, has been identified as the
main concern of such procedures. Due to high con-
nectivity of the problem domain and the abundance of
equally good choices during the plateau phase, neither

HSAT nor e-search re-visit already explored vertices
(corners) of the cube for large-scale problems. This
property of HSAT has been stated as the reason of its
performance advantage for randomly generated prob-
lems in comparison with GSAT (Gent & Walsh 1995).

To re-evaluate the importance of visiting new cor-
ners of the N-dimensional cube, we introduced an-
other hill-climbing procedure, that differs from GSAT
only in keeping track of all visited vertices and Never
Re-visiting them again, NRGSAT. On all randomly
generated 3SAT problems, NRGSAT’s performance in
terms of flips was identical to GSAT’s one. Practi-
cally, NRGSAT ran much slower, because it needs to
maintain a list of visited vertices and check it before
every flip. Based on this experiment, we were able to
conclude that exploring new corners of the cube is not
that important. This increased our interest in study-
ing further reasons for the performance advantage of
HSAT over GSAT.

We focused our attention on poss-flips - the num-
ber of equally good flips between which GSAT ran-
domly picks (Gent & Walsh 1993), or, alternatively, the
branching factor of GSAT search during the plateau
phase. We noticed that on earlier stages of the plateau
phase both GSAT and NRGSAT tend to increase
poss-flips, whereas HSAT randomly oscillates poss-flips
around a certain (lower) level. To confirm the im-
portance of poss-flips, we introduced variable weightsa

as a second heuristic to break ties during the plateau
phase of NavGSAT. NavGSAT monitors the number of
flips performed for each variable and among all equally
good flips in terms of the number of unsatisfied clauses,
NavGSAT picks a variable that was flipped the least
number of times. In case of second-order ties, they
can be broken either randomly, fair - NavRGSAT - or
deterministically, unfair, according to a fixed order -
NavFGSAT.

Both NavRGSAT and NavFGSAT allow to flip back
the just flipped variable. Moreover, the latter proce-
dure often forces to do so due to the fixed order of vari-
ables. However, the performance of both NavRGSAT
and NavFGSAT is very close to HSAT’s performance.
Table 3 presents median, mean and standard deviation
of GSAT, HSAT, NavRGSAT and NavFGSAT for ran-
domly generated 3SAT problems with 100 and 1000
variables and different ratios L to N. We investigated
problems of this big size, because they represents the
threshold between satisfiability problems that accept
solutions by conventional resolution methods, for ex-
ample Davis-Putnam procedure, and ones that can be
solved by GenSAT hill-climbing procedures.

In the beginning of the plateau phase both
NavGSAT methods behave similarly to HSAT:
Variables flipped earlier are considered last when

aWeight of each variable is the number of times this
variable has been flipped from the beginning of the search
procedure. Each flip of a variable increases its weight by
one.

105



Problem Algorithm Mean Median St.Dev.
IO0 GSAT 12,869 5326 9515

vats, HSAT 2631 1273 1175
430 NavFGSAT 3558 2021 1183

clauses NavRGSAT 3077 1743 1219
10oo GSAT 4569 2847 1863
vats9 HSAT 1602 1387 334
3000 NavFGSAT 1475 1219 619

clauses NavRGSAT 1649 1362 675
1000 GSAT 7562 4026 3515
vars, HSAT 3750 2573 1042
3650 NavFGSAT 3928 2908 1183

clauses NavRGSAT 4103 3061 1376

Table 3: Comparison of number of flips for GSAT,
HSAT, NavRGSAT and NavFGSAT.

NavGSAT is looking for the next variable to flip. As
more variables gain weight, NavGSAT methods’ be-
havior deviates from HSAT. Both methods can be per-
ceived as an approximation of HSAT.

We identified that a larger number of poss.flips is the
main reason why GSAT loses to HSAT and NavGSAT
on earlier stages of the plateau phase. As the number
of unsatisfied clauses degrades, there are less choices
for equally good flips for GSAT, and the increase of
poss-flips is less visible. During earlier sideway flips
GSAT picks equally good variables randomly, this type
of selection leads to the vertices of the cube with big-
ger poss-flips, where GSAT tends to be "cornered" for
a while. Figure 2 presents average amounts of poss-
flips with the 95%-confidence intervals. The poss-flips
were summed up for each out of four hill-climbing pro-
cedures for every step in the beginning of the plateau
phases (from 0.25N to N) for a range of problem sizes.
Since the number of variables and the interval of mea-
suring grow linearly on N, we present sums ofposs-flips
scaled down by N2. As it follows from Figure 2, the
original GSAT consistently outnumbers all other three
procedures during that phase, although its confidence
intervals overlap with NavRGSAT and NavFGSAT’s
confidence intervals.

Figure 3 presents the dynamics of poss.flips during
a typical run of GSAT. It is easy to see that on early
plateaux poss-flipstend to grow with some random
noise, for example, in Figure 3 second, third and fifth
plateaux produced obvious growth of poss-flips until
drops corresponding to the improvement of the heuris-
tic values and, thus, the end of the plateau. During
the first and fourth plateaux, the growth is not that
steady though still visible. Even though flips back are
prohibited for NRGSAT, it maintains the same prop-
erty, because of the high connectivity of the problem
domain and the abundance of equally good choices.

Figure 4 represents the average percentage of ties
for a 3SAT problem with 100 variables and 430 clauses
over 100 runs for GSAT and HSAT, and for GSAT

,.,Jl~l~m=

m w m m m

Figure 2: Comparison of Poss.Flips for GSAT, HSAT,
NavRGSAT and NavFGSAT.

and NavRGSAT. The average number of poss-flips
for GSAT dominates the analogous characteristic for
HSAT by a noticeable amount. This type of dominance
is similar in the comparison of GSAT with NavRGSAT
in the beginning of the plateau phase. In the second
part of the plateau phase the number of poss-flips for
HSAT or NavRGSAT approaches the number of poss.
flips for GSAT. Lower graph represents second-order
ties for NavRGSAT that form a subset of poss-flips.

Our experiments confirmed the result obtained in
(Gent & Walsh 1993) that the whole picture scales 
lincaDly in the number of variables and the number
of poss.flips. The plateau phase begins after about
0.2N- 0.25N steps. By that moment at most a
quarter of the variable set has been flipped, and thus
NavFGSAT mimics HSAT up to a certain degree. Af-
ter 2N or 3N flips, both versions of NavGSAT diverge
significantly from HSAT. After these many steps both
NavRGSAT and NavFGSAT still maintain random os-
cillation of poss.flips, whereas GSAT tends to promote
higher levels of poss-flips. Unfortunately, for problems
with larger ratio of the number of clauses to the num-
ber of variables NavFGSAT is often trapped in an in-
finite loop. NavRGSAT also may behave inefficiently
for such problems: From time to time the policy of

106



Figure 3: Dynamics of Poss-Flips for GSAT.

NavRGSAT forces it to flip the same variable with a
low weight several times in a row to gain the same
weight as other variables from the set of poss.flips.

Thus, NavGSAT showed that the number of poss-
flips plays an important role in improving the efficiency
of GenSAT procedures. HSAT capitalizes on this prop-
erty and therefore constitutes one of the most efficient
hill-climbing procedures for random problem instances.
However, many real-world satisfiability problems are
highly structured and, if applied, HSAT may easily
fail due to its queuing policy. NavGSAT suggests an-
other sub-family of GenSAT hill-climbing procedures
that does not tend to increase the number of poss-
flips. Weights of variables and their combinations can
be used as a second tie-breaking heuristic to main-
tain lower level of poss-flips and find exact or deliver
approximate solutions for those problems for which
HSAT fails to solve.

For randomly generated 3SAT problems HSAT
proved to be one of the most efficient hill-climbing
procedures. There has been reports on HSAT’s fail-
ures in solving non-random propositional satisfiability
problems (Gent & Walsh 1995). We view the non-
flexibility of HSAT’s queue heuristic as a possible ob-
stacle in solving over-constrained problems. This does
not happen in solving random 3SAT problems with low
L/N-ratio.

Approximate Satisfaction
While running experiments with GSAT, HSAT and
other hill-climbing procedures, we noticed that GSAT
experiences biggest loss in the performance in the be-
ginning of the plateau phase where the amount of poss-
flips can be as high as 20-25%. On the other hand,
HSAT, NavFGSAT and NavRGSAT behave equally
good during the hill-climbing phase and the begin-
ning of the plateau phase. We thus concluded that
any of the latter three procedures can be applied to
provide fast approximate solutions. For some prob-
lems, versions of NavGSAT are not as efficient as

Figure 4: Percentage of Poss.Flips for GSAT with
HSAT and GSAT with NavRGSAT.

HSAT. Nonetheless, we introduced NavFGSAT and
NavRGSAT to show that HSAT’s queuing policy is not
the unique way of improving the efficiency of solving
propositional satisfiability problems.

Approximate solutions can be utilized in time-
critical problems where the quality of the solution
discounts the time spent for solving the problem.
NavGSAT can be also applied to problems with dy-
namically changing domains, when the domain changes
can influence the decision making process. Finally, ap-
proximate solution provide an excellent starting point
for a different search policy. For example, WGSAT
and UGSAT (Frank 1996) utilized a promising idea
of the instant heuristic update based on the weight
of unsatisfied clauses. An approximate solution pro-
vided by HSAT or NavGSAT constitutes an excellent
starting point for WGSAT, UGSAT or another effec-
tive search procedure of a satisfiable solution, for exam-
ple, e-search (with heuristic updates). Among others
we outline the following benefits of employing HSAT or
NavGSAT to deliver a good starting point for another
search method:

* Perfect initial assignment with a low number of un-
satisfied clauses.

* Absence of hill-climbing phase that, for example,
eliminates noise in tracking clause weights.

¯ Efficient search in both steps of policy-switching ap-
proach.

107



¯ Convenient point in time to fork search in multi-
agent/multi-processor problem scenarios.

Although HSAT, itself, is an efficient hill-climbing
procedure for randomly generated problems with a
low clause-variable ratio, we expect that HSAT might
experience difficulties in more constrained problems.
NavGSAT provides another heuristic that guides effi-
ciently in the initial phases. On the other hand, the
hill-climbing phase may either produce noise in clause
weight bookkeeping or redundant list of vertices with
updated heuristics that slows down the performance
of e-search. Search with policy switching can benefit
significantly from employing efficient procedures in all
of its phases.

Navigational Problems
To confirm the results of our navigational approach to
GSAT, we applied all the discussed above hill-climbing
procedures to the following simple navigational prob-
lem:

Navigational Problem (NavP): An agent 
given a task to find the shortest path that
reaches a goal vertex from a starting vertex in an
"obstacle-free" rectangular grid.

NavP is a simplistic planning problem. It can be rep-
resented as a propositional satisfiability problem with
N = ISI * D variables, where S is the set of vertices
in the rectangular grid and D is the shortest distance
between starting vertex X and goal vertex G. In a cor-
rect solution, a variable xd is assigned True (xd = 1),
if s is dth vertex on the shortest path from X to G,
and False otherwise. There can be only one variable
with the True value among variables representing grid
vertices that are d-far from starting vertex X. This
requirement implies Lt = e(ISI ~ * D) pigeonhole-like
constraints:

D-1

A A v- v4)
d=l 81#J2

Already these constraints make the domain look "over-
constrained," since the ratio of L1 to N is not asymp-
totically bounded. Another group of constraints has
to force True-valued variables to form a continuous
path. There can be different ways of presenting such
constraints, we chose the easiest and the most natural
presentation that does not produce extra variables:

D-I

A
d=2 sES

Vertices sl, s2, s3, s4 E S are the neighbors of vertex
s E S in the rectangular grid. To reduce the number
of variables and clauses, the initial and the goal states
are represented by stand-alone single clauses:

(v/, v v,’. v v, v v:.)

D-1(v,, v -’ vv, ,, )
Vertices ss, as, sT, ss e S are the neighbors of the start-
ing vertex, sg, sl0, all, s12 E S are the neighbors of the
goal vertex.

Second group of constraints is not presented in the
classical CNF form. It is possible to reduce it to
3SAT, but such a reduction will introduce a lot of
new variables and clauses and will significantly slow
down the performance without facilitating search for
a satisfiable assignment. From the point of view of
hill-climbing procedures that track clause weights, this
would mean only a different initial weight assignment
and a linear change in bookkeeping clause weights.
Therefore, we decided to stay with the original non-
3SAT model and considered each complex conjunction
V,.s(V2 A (V4-’ V V4-’ V V4-’ V V4-1)) as a sin-
gle~clause. Together with the starting and goal ver-
tex constraints, the second group contains L2 = O(D)
constraints that force True-valued variables to form a
continuous path.

It is fairly easy to come up with an initial solution,
so that all but one constraint are satisfied. Figure 5
shows one of such solutions that alternates between
the goal vertex and one of its neighbors, and the fi-
nal path that satisfies all the constraints. The original
GSAT has complexity that is exponential on D. It per-
forms poorly for such domains, because at every step
it has more equally good chances than any other algo-
rithm. HSAT was able to solve "toy" problems with
less than 200 variables until its search was under the
influence of initial states. For larger problems, after
an initial search HSAT used to switch to a systematic
search that avoided changing recently changed vertices.
Since HSAT re-started search from both starting and
goal vertices on a regular basis, all the variable corre-
sponding to their neighboring vertices has frequently
changed their values. Therefore, paths from the oppo-
site direction attempted to avoid changing these vari-
ables again. This was one of the domain where the
queuing policy of HSAT played against it.

A slightly modified versions of NavFGSAT and
NavRGSAT were capable of solving larger problems us-
ing Top-Down Depth-First-Search (TDDFS). TDDFS
traverses repeatedly the search tree (the set of vertices
reachable in D steps) from the root down, each time
attempting to visit the least visited vertex from the
current vertex or, if possible, unvisited vertex. The
only modification of this behavior was that NavGSAT
methods alternated roots between the starting vertex
and the goal vertex while performing such search.

Conclusions
We showed that GenSAT hill-climbing procedures for
solving propositional satisfiability problems can be in-
terpreted as navigational, agent-centered search on a
high-dimensional cube, NavGSAT. This type of search
heavily depends on how well heuristic values repre-
sent the actual distance towards the set of goal states.

108



HSAT, one of the most efficient GSAT-like procedures,
maintains low level of poss-flips. We identified this
property as the main benefit of HSAT in comparison
with the original GSAT. However, the non-flexibility
of HSAT’s queuing policy can be an obstacle in solv-
ing more constrained problems. We introduced two
versions of NavGSAT that also maintain low level of
poss-flips and can be applied as approximating proce-
dures for time-critical or dynamically changing prob-
lems, or serve as a starting phase in search procedures
with switching search policies.

Figure 5: Initial and final solutions for NavP.

Acknowledgements

This research is sponsored in part by the National Science
Foundation under grant number IRI-9502548. The views
and conclusions contained in this document are those of

the authors and should not be interpreted aa represent-
ing the official policies, either expressed or implied, of the
sponsoring organizations or the U.S. government.

References
Crawford, J.; and Auton, L. 1993. Experimental re-
sults on the crossover point in satisfiability problems.
In Proceedings of 11th National Conference on Arti-
ficial Intelligence (AAAI), 21-27.
Frank, J. 1996. Weighting for Godot: Learning
Heuristics for GSAT. In Proceedings of 13th Na-
tional Conference on Artificial Intelligence (AAAI),
338-343.

Gent, I.; and Walsh, T. 1993. Towards an under-
standing of hill-climbing procedures for SAT. In Pro-
ceedings of 11th National Conference on Artificial In-
telligence (AAAI), 28-33.
Gent, I.; and Walsh, T. 1993. An empirical analysis
of search in GSAT. Journal of Artificial Intelligence
Research, 1993, 1, 47-59.
Gent, I.; and Walsh, T. 1995. Unsatisfied variables
in local search. In J. Hallam, editor,Hybrid Problems,
Hybrid Solutions. IOS press, 1995.

Gu, J. 1992. Efficient local search for very large-scale
satisfiability problems. SIGART Bulletin 3(1):8-12.
Ishida, T.; and Shimbo, M. 1996. Improving the
learning efficiencies of realtime search.. In Proceedings
of 13th National Conference on Artificial Intelligence
(AAAI), 338-343.
Koenig, S. 1995. Agent-Centered Search: Situated
Search with Small Look-Ahead. Ph.D. Thesis Pro-
posal; School of Computer Science, Carnegie Mellon
University; 30 pages.

Koenig, S., and Smirnov, Y. 1996. Graph learning
with a nearest neighbor approach. In Proceedings
of the Conference on Computational Learning The-
ory (COLT), 19-28.

Korf, R. 1990. Real-time heuristic search. Artificial
Intelligence 42 (2-3): 189-211.
Mitchell, D.; Selman, B.; and Levesque, H. 1992.
Hard and easy distributions of SAT problems. In
Proceedings of lOth National Conference on .Artificial
Intelligence (AAAI), 459-465.
Selman, B.; Levesque, H.; and Mitchell, D. 1992. A
new method for solving hard satisfiability problems.
In Proceedings of 10th National Conference on Arti-
ficial Intelligence (AAAI}, 440-446.

Selman, B.; Kautz, H.; and Cohen. B. 1994. Noise
strategies for improving local search. In Proceedings
of 12th National Conference on Artificial Intelligence
(AAAI), 337-343.
Smirnov, Y.; Koenig, S.; Veloso, M.: and Simmons,
R. 1996. Efficient goal-directed exploration. In Pro-
ceedings of 13th National Conference on Artificial In-
telligence (AAAI), 292-297.

109




