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Abstract

Time series problems involve analysis of periodic
functions for predicting the future. A flexible re-
gression method should be able to dynamically
select the appropriate model to fit the available
data. In this paper, we present a function ap-
proximation scheme that can be used for model-
ing periodic functions using a series of orthogonal
polynomials, named Chebychev polynomials. In
our approach, we obtain an estimate of the error
due to neglecting higher order polynomials and
thus can flexibly select a polynomial model of the
proper order. We also show that this approxima-
tion approach is stable in the presence of noise.

Keywords: Function approximation,Orthogonal poly-
nomials

Introduction

Analysis of time series data plays an important role
in finance and marketing. A model derived from past
data can help to predict future behavior of the phe-
nomenon under study. For example , models predict-
ing demand for product can be used to direct capital
allocation. For analysis of time series data, we, in gen-
eral, start with a predetermined model and try to tune
its parameters to fit the data. For example, we may
choose to fit a linear model to the data. for a flexi-
ble approximation scheme, however, a model should be
chosen dynamically, based on data. In this paper, a
function approximation scheme is presented, which can
be used for modeling periodic functions. We have used
a series of orthogonal polynomials, called Chebychev
polynomials for approximating time series data. We
know that any function can be represented with an in-
finite series of Chebychev polynomials. But we cannot
work with an infinite series and use only a finite number
of terms to derive an approximation. This method gives
an approximate model for the data using n Chebychev
polynomials where the number of polynomials can be
dynamically decided from the data. The approximated
model with n Chebychev polynomials gives the least
squared error with n polynomials.

Furthermore, our algorithm allows incremental de-
velopment of the model, i.e. with each piece of data,

the model can be improved. We have also provided the
convergence proof of the algorithm, which says that un-
der infinite sampling this method is guaranteed to give
accurate model and the level of accuracy is limited only
by error due to truncation of the series.

Chebychev polynomials

Chebychev polynomials are a family of orthogonal poly-
nomials (Geronimus 1961). Any function f(x) may 
approximated by a weighted sum of these polynomial
functions with an appropriate selection of the coeffi-
cients.

OO
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f(x) = -~ + E ai * 7](x)
i=1

where

and
2 F f(x) * 7](x)

ai=-zrJ_l ~-1---’-’~ dx.

Working with an infinite series is not feasible in
practice. We can, however, truncate the above series
and still obtain an approximation, ](x), of the func-
tion (Gerald & Wheatly 1992). The Chebychev poly-
nomials converges faster than the Taylor series for the
same function (Gerald g: Wheatly 1992). Let us assume
we are using only the first n terms of the series. For a
rapidly converging series, the error due to truncation is
approximately given by the first term of the remainder,
i.e., a,~Tn(x). We have chosen Chebychev polynomials
for function approximation because truncation points
can be chosen to provide approximate error bounds.

It should be noted that the expansion of a function
f(x) with n Chebychev polynomials, gives the least
squared polynomial approximation with the n polyno-
mials (Foxand & Parker 1968).

To produce a viable mechanism for building a model
based on Chebychev polynomials would require the de-
velopment of an algorithm for calculating the polyno-
mial coefficients. We would also need to prove that this
algorithmic updates would result in a convergence of
the approximated function to the actual time function
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Figure 1: Approximating f(x) = sin(lO*x) for Number
of Chebychev Polynomials used = 20 and number of
data points = 1000.
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Figure 2: Approximating f(x) = Isin(5*x)l for Number
of Chebychev Polynomials used = 10 and number of
data points = 1000.

underlying the sampled data. We provide such an al-
gorithm and the associated convergence theorem in the
next section.

An algorithm to get the temporal model

from time series data

Let f(x) be the target function of x and f(x) be its
approximation based on the set of samples S = {Sj},
where Sj = (xj, v~:j)Vj = 1, 2,..., k and k = Number of
instances and v~j = f(xj). We may have to change the
scale for the values x j, so that all the values are in the
range [-1 : 1]; then we get the approximated function
in the range [-1 : 1], which we may need to scale back
to get the desired value.

Let n be the number of Chebychev polynomials we
are going to use for the purpose of learning. Let
~(x) i E [0..n] be the Chebychev polynomials. The
steps of the algorithm are:

1. InitializeCi=0, Vi=0,1,2,...,n

2. For all j do

3. Vi = 0,1,2,...,n

4. End for

5. Set

x/l - x2

n
Co ~G*Ti= s<, (-7- +

i=l

where K = ¢(k) , is function of number of interac-
tions.

Theorem 1 Under infinite sampling the algorithm
can approximate the actual function.
Proof: See Appendix.

Approximations of periodic functions

We know that a periodic function S(x) can in general
be expressed as

f(x) ---- f(x -t- T* 

where T is the period and n E [0, 1,2,...] . So the na-
ture of the function in a single period and the length
of the period is enough for the prediction of behavior
for unknown x values. From our approximation scheme
we get these two pieces of information and can success-
fully predict the behavior of the functional values for
unseen situations. We have taken some typical periodic
functions and tested the algorithm for those functions:

f(x) --- sin(x 10), and f( x) -=Isi n(x * 5)1

We know that the error due to truncation is given by the
first term in the series and thus we can flexibly decide
the number of terms to be chosen for approximation.
The actual functions and the polynomial approxima-
tions obtained for these two functions are presented in
Figures 1 and in Figures 2. We have given each data
point sequentially into the algorithm and the resulting
functions generated are found to be fairly good approx-
imations of the underlying functions. Thus we can get a
good measure of the period and nature of the function
in a period. We can use this informations to get the
functioal values in unseen points.

We have also shown the nature of improvement of the
model with more data points for the f(x) Isin(x * 5)
in Figures 3. We have calculated error as the average
of the difference of approximate functional values and
the accurate values, over a set of sampled points in the
interval [-1 : 1]. It shows that the approximation ac-
curacy increases rapidly with number of points.

Effects of Noise: We have also tested the approxima-
tion scheme under noisy data, where noise is added
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Figure 3: Nature of decreasing error in approximating
f(x) = Isin(x 5)] Number ofChebychev Polynomials
used is 11 and sampling resolution is 1000.
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Figure 4: Nature of decreasing error in approximating
f(x) = sin(x, 10) under noise Number of Chebychev
Polynomials used is 20 and sampling resolution is 1000.

to each data point. Here we assume that the random
noise follow a Normal distribution.
We have run experiments with random noise follow-
ing Normal distribution(# = 0,~) where g = 

= 0.1, ~ = 0.3, g = 0.5 values are applied where
value of f(x) is in the range [-1 : 1]. We have in-
vestigated the nature of decreasing error with more
data points and see that the process is resilient to
noise as average error do not increase rapidly with
noise shown in Figures 4.

Conclusion
We have presented an algorithm that can build a model
from the time series data where this model is not a pre-
determined one. Number of Chebychev polynomials is
determined automatically, as the first term in the re-
mainder gives the measure of the error for approxima-
tion. So, we can suitably select the model for better ap-
proximation. Moreover, we have tested this approach
with noisy data and see that its performance doesn’t
decrease rapidly with noise and hence stable against
noise.

Appendix
Proof of Theorem 1

We know, that any function can be represented as a
combination of Chebychev polynomials as,

oo
a0

f(x) : -~ + ~ al * Ti (x)
i=1

Next, we are going to prove that the function ](x)
tends to f(x) as more and more samples of the function,

of greater resolution is received. We have

¢ ,fi (/(x~) ~(x~)
--

where ¢ is a function of no of interactions and can be
given by ¢ = 2" So,we get,

j=l

Now, in case of infinite sampling and infinite resolu-
tion, we have,

So for Vi -- 0, 1, 2,...n i.e. the coefficient becomes,

Ci = lim ¢--, {fi7-_f(xJ) ¯ ~(xj)
¢’+0 71" j=l ~i/1--x~

C0= lira 1 ~ f(xj) 7~(xj),¢
¢-~0 71" j=l

_ ¢ * / f(x) ~(x)dxCi

As, the x range is [-1:1] and in case of infinite sam-
pling and resolution we have information at all the val-
ues of x, the integral limits becomes,

1 fl f(x)c, = ,j_ , To(x)dz

~Ci=~
2

Thus, we show that the learned coefficients approxi-
mate the actual polynomial coefficients for infinite sam-
pling.
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