
Recommendation as Classification:
Using Social and Content-Based Information in Recommendation

Chumki Basu*
Bell Communications Research

445 South Street
Morristown, NJ 07960-6438

cbasu@bellcore.com

Haym Hirsh
Department of Computer Science

Rutgers University
Piscataway, NJ 08855
hirsh@cs.rutgers.edu

William Cohen
AT&T Laboratories

180 Park Ave, Room A207
Florham Park, NJ 07932
wcohen@research.att.com

Abstract
Recommendation systems make suggestions about arti-
facts to a user. For instance, they may predict whether
a user would be interested in seeing a particular movie.
Social recomendation methods collect ratings of arti-
facts from many individuals and use nearest-neighbor
techniques to make recommendations to a user concern-
ing new artifacts. However, these methods do not use
the significant amount of other information that is of-
ten available about the nature of each artifact -- such
as cast lists or movie reviews, for example. This paper
presents an inductive learning approach to recommen-
dation that is able to use both ratings information and
other forms of information about each artifact in pre-
dicting user preferences. We show that our method
outperforms an existing social-filtering method in the
domain of movie recommendations on a dataset of more
than 45,000 movie ratings collected from a community
of over 250 users.

Introduction
Recommendations are a part of everyday life. We usu-
ally rely on some external knowledge to make informed
decisions about a particular artifact or action, for in-
stance when we are going to see a movie or going to
see a doctor. This knowledge can be derived from so-
cial processes. At other times, our judgments may be
based on available information about an artifact and our
known preferences. There are many factors which may
influence a person in making choices, and ideally one
would like to model as many of these factors as possible
in a recommendation system.

There are some general approaches to this problem.
In one approach, the user of the system provides ratings
of some artifacts or items. The system makes informed
guesses about other items the user may like based on
ratings other users have provided. This is the framework
for social-filtering methods (Hill, Stead, Rosenstein
Furnas 1995; Shardanand & Maes 1995). In a second
approach, the system accepts information describing the
nature of an item, and based on a sample of the user’s
preferences, learns to predict which items the user will
like (Lang 1995; Pazzani, Muramatsu, & Billsus 1996).
We will call this approach content-based filtering, as it
does not rely on social information (in the form of other
users’ ratings). Both social and content-based filtering
can be cast as learning problems: the objective is to

*Department of Computer Science, Rutgers University,
Piscataway, NJ 08855
We would like to thank Susan Dumais for useful discussions
during the early stages of this work.
Copyright ~)1998, American Association for Artificial Intel-
ligence (www.aaai.org). All rights reserved.

learn a function that can take a description of a user and
an artifact and predict the user’s preferences concerning
the artifact.

Well-known recommendation systems like Recom-
mender (Hill, Stead, Rosenstein & Furnas 1995) and
Firefly (http: //www.firefly.net) (Shardanand & Maes
1995) are based on social-filtering principles. Recom-
mender, the baseline system used in the work reported
here, recommends as yet unseen movies to a user based
on his prior ratings of movies and their similarity to the
ratings of other users. Social-filtering systems perform
well using only numeric assessments of worth, i.e., rat-
ings. However, social-filtering methods leave open the
question of what role content can play in the recommen-
dation process.

Let’s take the case of movie data. On the Web alone,
one is likely to find the following information for a given
movie: a breakdown of cast/crew, plot, movie produc-
tion details, reviews, trailer, film and audio clips, (and
ratings too). When deciding on a movie to see, a per-
son has easy access to this material. Social-filtering
may be characterized as a generic approach, unbiased
by the regularities exhibited by properties associated
with the items of interest (Hill, Stead, Rosenstein
Furnas 1995). (A significant motivation for some of the
work on such systems is to explore the utility of recog-
nizing communities of users based solely on similarities
in their preferences.) However, the fact that content-
based properties can be identified at low cost (with no
additional user effort) and that people are influenced by
these regularities make a compelling reason to investi-
gate how best to use them.

When are ratings alone insufficient? Social-filtering
makes sense when there are enough other users known
to the system with overlapping characteristics. It is
dependent upon the current state of the system -- the
number of users and the number and selection of movies
that have been rated. So, for example, when a new
movie comes out, there will be a period of time when
a recommendation system will have little ratings data
for this movie, thus affecting its ability to make reliable
recommendations for this movie.

In this paper, we present a new, inductive learn-
ing approach to recommendation. We show how pure
social-filtering can be accomplished using this approach,
how the naive introduction of content-based information
does not help -- and indeed harms -- the recommenda-
tion process, and finally, how the use of hybrid features
that combine elements of social and content-based in-
formation makes it possible to achieve more accurate

11

From: AAAI Technical Report WS-98-08. Compilation copyright © 1998, AAAI (www.aaai.org). All rights reserved.

recommendations. We use the problem of movie recom-
mendation as our exploratory domain for this work since
it provides a domain with a large amount of data (over
45,000 movie evaluations across more than 250 people),
as well as a baseline social-filtering method to which
we can compare our results (Hill, Stead, Rosenstein
Furnas 1995).

The Movie Recommendation Problem
In the social-filtering approach, a recommendation sys-
tem is given as input a set of ratings of specific artifacts
for a particular user. In movie recommendation, for
instance, this input would be a set of movies that the
user had seen, with some numerical rating associated
with each of these movies. The output of the recom-
mendation system is another set of artifacts, not yet
rated by the user, which the recommendation system
predicts the user will rate highly.

Social-filtering systems would solve this problem by
focusing solely on the movie ratings for each user, and
by computing from these ratings a function that can give
a rating to a user for a movie that others have rated but
the user has not. These systems have traditionally out-
put ratings for movies, rather than a binary label. For
example, Recommender computes for a user a smaller
group of reference users, known as recommenders, who
are other community members most similar to the user.
Using regression techniques, these recommenders’ rat-
ings are used to predict ratings for new movies.

Content-based recommendation systems, on the other
hand, would reflect solely the non-ratings information.
For each user they would take a description of each liked
and disliked movie, and learn a procedure that would
take the description of a new movie and predict whether
it will be liked or disliked by the user. For each user a
separate recommendation procedure would be used.

Our Approach
Our goal is to develop an approach to recommendation
that can exploit both ratings and content information.
We depart from the traditional social-filtering approach
by framing the problem as one of classification, rather
than artifact rating. However, we differ from content-
based filtering methods in that social information, i.e.
other users’ ratings, will be used in the inductive learn-
ing process.

We will formalize the movie recommendation prob-
lem as a learning problem--specifically, the problem of
learning a function that takes as input a user and a
movie and produces as output a label indicating whether
the movie would be liked (and recommended) or dis-
liked:

f((user, movie)) --, {liked, disliked}
As a classification problem, we are also interested in pre-
dicting whether a movie is liked or disliked, not an exact
rating. Our output is not an ordered list of movies, but
a set of movies which we predict will be liked by the
user. Most importantly, we are now able to generalize
our inputs to the problem to other information describ-
ing both users and movies.

The information we have available is a collection of
user/movie ratings (on a scale of 1-10), and certain addi-

tional information concerning each movie.1 To present
the results as sets of movies predicted to be liked or
disliked by a user we compute a ratings threshold for
each user such that 1/4 of all the user’s ratings exceed
it and the remaining 3/4 do not, and we return as rec-
ommended any movie whose predicted rating is above
the training-data-based threshold on movies.

Below we will outline a number of alternative ways
that a user/movie rating might be represented for the
learning system. We will first describe how we represent
social recommendation information, which we call "col-
laborative" features, then how we represent "content"
features, and finally describe the hybrid features that
form the basis for our most successful recommendation
system.
Collaborative Features
As an initial representation, we use a set of features that
takes into account, separately, user characteristics and
movie characteristics. For instance, perhaps a group of
users were identified as liking a specific movie:

Mary, Bob, and Jill liked Titanic.

We grouped users like these into a single feature called
users who liked movie X, the value of which is a set.
(E.g., { Mary, Bob, Jill} would be the value of the fea-
ture users who liked movie X for the movie Titanic).
Since our ground ratings data contain numerical rat-
ings, we say a user likes a movie if it is rated in the
top-quartile of all movies rated by that user.2

We also found it important to keep track of the user’s
favorite movies, namely those which appeared in his top-
quartile:

Tim liked the movies, Twister, Eraser, and
Face/ O~.

We developed an attribute, movies liked by user, which
encoded this information. Collectively, we call these
attributes collaborative features since they used data
known to social-filtering systems: users, movies, and
ratings.

As a result, every user/movie rating is converted into
a tuple of two set-valued features. The first attribute
is a set containing the movies liked by the user, and
can be thought of as a single attribute describing the
user. The second attribute is a set containing the users
who like the given movie, and can be thought of as a
single attribute describing the movie. Each such tuple
is labeled by whether it was liked or disliked by the user,
according to whether it was in the top-quartile for the
user.

The use of set-valued features led naturally to use of
Ripper. Ripper is an inductive learning system that is
able to learn rules from data with set-valued attributes
(Cohen 1995; 1996). A rule contains a conjunction
several tests. In the case of a set-valued feature f, a

lit would be desirable to make the recommendation pro-
cess a function of user attributes such as age or gender, but
since that information is not available in the data we are
using in this paper, we are forced to neglect it here.

2The value of 1/4 was chosen rather arbitrarily, and our
results are similar when this value was changed to 20% or
30%.

test may be of the form "ei E f" where ei is some
constant that is an element of f in some example. As
an example, Ripper might learn a rule containing the
test Jaws E movies.liked.by-user.
Content Features
Content features are more naturally available in a form
suitable for learning, since much of the information
concerning a movie are available from (semi-) struc-
tured online repositories of information. An exam-
ple of such a resource which we found very useful for
movie recommendation is the Internet Movie Database
(IMDD) (http: //www.imdb.com). The following
tent features in our experiments were extracted from
this database: Actors, Actresses, Directors, Writers,
Producers, Production Designers, Production Compa-
nies, Editors, Cinematographers, Composers, Costume
Designers, Genres, Genre Keywords, User-submitted
Keywords, Words in Title, Aka (also-known-as) Titles,
Taglines, MPAA rating, MPAA reason for rating, Lan-
guage, Country, Locations, Color, Soundmix, Running
Times, and Special Effects Companies.
Hybrid Features
Our final set of features reflect the common human-
engineering effort that involves inventing good features
to enable successful learning. We looked for content
that was frequently associated with the movies in our
data and that is often used when choosing a movie. An
example would be a movie’s genre. To make effective use
of the genre feature, we needed to relax an apparently
natural assumption: that a (user, movie) pair would
be encoded as a set of collaborative features, plus a
set of content features describing the movie. Instead,
we found it more effective to define new collaborative
features that are influenced by content, which we call
hybrid features.

We isolated three of the most frequently occurring
genres in our data -- comedy, drama, and action. We
then introduced features that isolated groups of users
who liked movies of the same genre, such as users who
liked dramas. Similar features were defined for comedy
and action movies. These features combine knowledge
about users who liked a set of movies with knowledge
of some content associated with the movies in the set.
Definitions concerning what it means for a user to like a
movie remain the same (top-quartile) as in earlier parts
of this paper.

Experiments and Results
We report on some of the significant results of our ex-
periments using different sets of features.
Training and Test Data
Our data set consists of more than 45,000 movie ratings
collected from approximately 260 users which originated
from a data set that was used to evaluate Recommender.
However, over the course of our work we discovered that
the training and test distributions in this data were dis-
tributed very differently. We therefore generated a new
partition of data into a training set which contained
90% of the data and a testing set which contained the
remaining 10%, for which the two distributions would be
more similar. Unfortunately, for some of the users Rec=
ommender failed to run correctly, and those few users

were dropped from this study. Note that this was the
only reason for dropping users. No users were dropped
due to the performance of our own methods.

We generated a testing set by taking a stratified ran-
dom sample (Moore 1985) of the data as follows:

¯ For every user, separate and group his movie/rating
pairs into intervals defined by the ratings. Movies are
rated on a scale from 1 to 10.

¯ For each interval, take a random sample of 10% of the
data and combine the results.
We have clearly defined intervals where all the units in

an interval share a common property, the rating. There-
fore, the holdout set we computed is more representa-
tive of the distribution of ratings for the entire data set
than it would have been if we had used simple random
sampling.
Evaluation Criteria
Our evaluating a movie as being liked if it is in the
top-quartile reflects our belief that knowing the actual
rating of a movie is not as important as knowing where
the rating was relative to other ratings for a given user.
We are really interested in predicting whether a movie
would be amongst the user’s favorites. This has the nice
effect of dealing with the fact that the intervals on the
ratings scale are not equidistant. For instance, given a
scale of 1 to I0 where 1 indicates low preference and 10,
high preference, the "qualitative" difference between a
rating of 1 and a rating of 2 is less when compared to the
difference between 6 and 7, for any user whose ratings
are mostly 7 and above.

We rely on two metrics commonly used in informa-
tion retrieval -- precisio~ and recall. Precision gives
us an estimate of how many of the movies predicted to
be in the top-quartile for a user really belong to that
group. Recall estimates how many of all the movies in
the user’s top-quartile were predicted correctly. We feel
that when recommending movies, the user is more inter-
ested in examining a small set of recommended movies
rather than a long list of candidates. Unlike document
retrieval, where the user can narrow a list of retrieved
items by actually reading some of the documents, here,
the user is really interested in seeing just one movie.
Therefore, our objective for movie recommendation is
to maximize precision without letting recall drop below
a specified limit. Precision represents the fact that a
movie selected from the returned set will be liked, and
the recall cutoff reflects the fact that there should be a
non-trivial number of movies returned (for example, in
case a video store is out of some of the recommended
titles).
Baseline Results
In our initial experiment, we applied Recommender’s
social-filtering methods to compute ratings for the hold-
out movies. For every individual, we separated his data
from the holdout set. The rest of his data along with all
of the other users’ data was made available to Reeom.
mender’s analysis routines and a rating was computed
for each of his holdout movies.

To determine whether a computed rating is in the top-
quartile~ we precompute thresholds for every user co~re-

sponding to the ratings which separate the top from the
lower quartiles. To convert a rating, we use the rule:
* If a predicted rating >= user’s threshold, set the rat-

ing to "+".
¯ Otherwise, set the rating to "-".
The thresholds are set individually for each user, us-
ing only the training data ratings for the training data
threshold, but the full set of data for a user is used to
set the testing data threshold.

Our precision estimates are microaveraged (Lewis
1991). which meant that our prediction decisions were
made from a single group and an overall precision es-
timate was computed. As shown in Table 1, Recom-
mender achieved microaveraged values of 78% for pre-
cision and 33% for recall.
Inductive Learning Results
In the first of our inductive learning recommendation
experiments using Ripper, we represent every data point
in the training and holdout sets as a collaborative fea-
ture vector. The collaborative features we used were:
¯ Users who liked the movie
¯ Users who disliked the movie
¯ Movies liked by the user

The entire training set and holdout sets are made
available to Ripper in two separate files. We ran Rip-
per on this data and generated a classification for each
example in the holdout set. Ripper produces rules that
it learns for this data which it uses to make predictions
about the class of an example.

The Ripper parameters we found most useful in ad-
justing from the default settings allow negative tests in
set.valued attributes and varying the loss ratio. The
first parameter allows the tests in rules to check for
non-containment of attribute values within a set-valued
feature. (E.g., tests like Jaws ~ movies-liked-by-user
are allowed.) The loss ratio is the ratio of the perceived
cost of a false positive to the cost of a false negative;
increasing this parameter encourages Ripper to improve
precision, generally at the expense of recall. In most
of the experiments, we varied the loss ratio until we
achieved a high value of precision with a reasonable re-
call. At a loss ratio of 1.9, we achieved a microaveraged
precision of 77% and a recall of 27% (see Table 1). This
level of precision is comparable to Recommender, but at
a lower level of recall.

In the second set of experiments, we replaced the col-
laborative feature vectors with a new set of features.
Here, we took the 26 features extracted from the IMDb
(listed earlier) and added them to the list of collabo-
rative features. We were not able to improve precision
and recall at the same time (see Table 1). Recalling
that high precision was more important to us than high
recall, we find these results generally inferior to that of
Recommender. Furthermore, examining the rules that
Ripper generated, we found that content features were
seldom used. Based on this experiment, the collabora-
tive data appear to be better predictors of user prefer-
ences than our initial encoding of content. In addition,
given the high dimensionality of our feature space, it
appears to be difficult to make reasonable associations
amongst the examples in our problem.

Method Precision Recall
Recommender 78% 33%
Ripper (no content) 77% 27%
Ripper (simple content) 73% 33%
Ripper (hybrid features) 83% 34%

Table 1: Results of the different recommendation ap-
proaches.

Next, we created features that combined collabora-
tive with content information relating to the genre of a
movie. These hybrid features were:
¯ Comedies liked by user
¯ Dramas liked by user
¯ Action movies liked by user
Although the movies in our data set are not limited to
these three genres, we took a conservative approach to
adding new features and began with the most popular
genres as determined by the data.

To introduce the next set of collaborative features,
we face a new issue. For example, we want a feature
to represent the set of users who liked comedies. Al-
though we have defined what it means to like a movie,
we have not defined what it means to like movies of a
particular genre. How many of the movies in the user’s
top-quartile need to be of a particular genre in order for
the user to like movies of that genre?

Based on the proportion of movies for a particular
genre in a user’s top-quartile, we identified broad clus-
ters. As a first cut, we divided the proportions of movies
of different genres into four groups. For each of the pop-
ular genres, comedy, drama, and action, we then defined
the following features:
¯ Users who liked many movies of genre X
¯ Users who liked some movies of genre X
¯ Users who liked few movies of genre X
¯ Users who disliked movies of genre X

We also add features including, for example, the genre
of a particular movie. Running Ripper on this data
with a loss ratio of 1.5, we achieved a microaveraged
precision of 83% with a recall of 34%. These results are
summarized in Table 1.

Using the standard test for a difference in propor-
tions (Mendenhall, Scheaffer, & Wackerly 1981, pages
311-315) it can be determined that Ripper with hybrid
features attains a statistically significant improvement
over the baseline Recommender system with respect to
precision (z = 2.25, p > 0.97), while maintaining a sta-
tistically indistinguishable level of recall. 3 Ripper with
hybrid features also attains a statistically significant im-
provement over Ripper without content features with
respect to both precision (z = 2.61, p > 0.99) and recall
(z = 2.61, p > 0.998).
Observations
Our results indicate that an inductive approach to learn-
ing how to recommend can perform reasonably well

3More precisely, one can be highly confident that there is
no practically important loss in recall relative to the baseline;
with confidence 95%, the recall rate for Ripper with hybrid
features is at least 32.8%.

when compared to social-filtering methods, evaluated
on the same data. We have also shown that by formu-
lating recommendation as a problem in classification,
we are able to combine meaningfully information from
multiple sources, from ratings to content. At equal lev-
els of recall, our evaluation criteria would favor results
with higher precision. Our results using hybrid features
show that even with high precision, we also have a slight
edge over recall as well.

Related Work
(Karunanithi & Alspector 1996) compare clique-based
and feature-based models for movie selection. A clique
is a set of users whose movie ratings are similar, compa-
rable to the set of recommenders in (Hill, Stead, Rosen-
stein & Furnas 1995). Those members of the clique who
have rated a movie that the user has not seen predict
a rating for that movie. Once a clique is formed for
a user, a movie rating is estimated by calculating the
arithmetic mean of the ratings for the members of the
clique. In the feature-based approach, features are ex-
tracted from movies a user has rated, a neural-network
user model is built associating the features and the rat-
ings, and ratings for unseen movies are computed by
considering their features as new inputs to the model.
The six features used were a movie’s category (genre),
Maltin (critic) rating, MPAA rating, Academy Award
information, length of movie, and country of origin. The
authors found that by using features, in most cases, they
outperformed a human critic but almost consistently did
worse than the clique method. Although our initial re-
sults with content features support these findings, we
also demonstrated that content information can lead to
improved recommendations, if encoded in an appropri-
ate manner.

Fab (Balabanovic & Shoham 1997) is a system which
tackles both issues of content-based filtering and social-
filtering. In the Fab system, content information is
maintained by two types of agents: user agents asso-
ciated with individuals and collection agents associated
with sets of documents. Each collection agent represents
a different topic of interest. Each of these agent-types
maintains its own profiles, consisting of terms extracted
from documents, and uses these profiles to filter new
documents. These profiles are reinforced over time with
user feedback, in the form of ratings, for new docu-
ments. Among the differences in our approach, ours is
not an agent-based framework and we do not have ac-
cess to topics of interest information, which in Fab were
collected from the users.

In addition to Recommender, another well known
social-filtering system is Firefly, a descendant of Rings
(Shardanand & Maes 1995). (Firefly has since expanded
beyond the domain of music recommendation). Rings
presents the user with a list of artists and albums to
rate. This system maintains a dynamic profile of each
user’s likes and dislikes. Profiles are compared with
one another to locate other individuals with similar
tastes. A number of similarity metrics are presented,
such as mean-squared difference and the Pearson-r mea-
sure. Once the most similar profiles are selected for a
user, Rings makes predictions by computing a weighted

average of the ratings in these profiles.
Final Remarks

In this paper, we have presented an inductive approach
to recommendation and evaluated it via experiments
on a large, realistic set of ratings. An advantage of
the inductive approach, relative to other social-filtering
methods, is its flexibility: we can encode collaborative
and content information as part of the problem repre-
sentation without any algorithmic modifications. Ex-
ploiting this flexibility, we have evaluated a number
of representations for recommendation, including two
types of representations using content. One of these
representations, based on hybrid features, significantly
improves performance over the purely collaborative ap-
proach. We have thus begun to realize the impact of
multiple information sources, including sources that ex-
ploit a limited amount of content. We believe that this
work provides a basis for further work in this area, par-
ticularly in harnessing other types of information con-
tent.

References
Balabanovic, M.; and Shoham Y. 1997. Content-
Based, Collaborative Recommendation. Communica-
tions of the ACM Vol. 40, No. 3. March, 1997.
Cohen, W. 1995. Fast Effective Rule Induction. In
Machine Learning: Proceedings of the Twelfth Inter-
national Conference. Lake Tahoe, California: Morgan
Kaufmann.
Cohen, W. 1996. Learning Trees and Rules with Set-
valued Features. In Proceedings of the Thirteenth Na-
tional Conference on Artificial Intelligence. Portland,
Oregon.
Hill, W.;Stead, L.;Rosenstein, M.; and Furnas, G.
1995. Recommending and Evaluating Choices in a Vir-
tual Community of Use. In Proceedings of the CHI-95
Conference. Denver, Colorado.
Karunanithi, N.; and Alspector, J. 1996. Feature-
Based and Clique-Based User Models for Movie Selec-
tion. In Proceedings of the Fifth International Confer-
ence on User Modeling. Kailua-Kona, Hawaii.
Lang, K. 1995. NewsWeeder: Learning to filter
netnews. In Machine Learning: Proceedings of the
Twelfth International Conference. Lake Tahoe, Cal-
ifornia: Morgan Kaufmann.
Lewis, D. 1991. Evaluating Text Categorization. In
Proceedings of the Speech and Natural Language Work.
shop. Asilomar, California.
Mendenhall, W.; Scheaffer, R.; and Wackerly, D.,
eds. 1981. Mathematical Statistics with Applications.
Duxbury Press, second edition.
Moore, D. 1985. Statistics: concepts and controversies.
W. H. Freeman.
Pazzani, M.; Muramatsu, J.; and Billsus, D. 1996.
Syskill & Webert: identifying interesting web sites. In
Proceedings of the Thirteenth National Conference on
Artificial Intelligence. Portland, Oregon.
Shardanand, U.; and Maes, P. 1995. Social Infor-
mation Filtering: Algorithms for Automating "Word
of Mouth". In Proceedings of the CHI-95 Conference.
Denver, Colorado.

