
CBR as a Framework for Design:

Augmenting CBR with other AI techniques

Mary Lou Maher

Department of Architectural and Design Science
University of Sydney
Sydney, NSW 2006

AUSTRALIA
mary @ arch.usyd.edu.au

Abstract
Design is an activity in which the role of experience plays a
larger part in the generation of alternative designs than
theoretical or formal knowledge. This has lead to increasing
interest in CBR as a way of assisting and/or automating
portions of the design process. However, there are major
areas in the CBR paradigm that do not address the needs of
practical CBR. Here CBR is presented as a framework for
design, with other AI techniques supporting different
aspects of CBR. Specifically, knowledge discovery is used
to assist in the development of CBR knowledge and genetic
algorithms in the generation of design solutions.

design profession rarely accounts for the design process,
but rather records the design experience as documented
projects. Therefore, we consider CBR as an overall
framework for intelligent design support and look at how
other AI techniques fit in that framework.

Case-Based Reasoning (CBR) is a reasoning paradigm
used in Artificial Intelligence that uses knowledge in the
form of previous experiences as the basis for solving new
problems. The main "reasoning cycle" employed by a CBR
framework for design is shown in Figure 1.

New Design Problem

Introduction

Design is characterised as a creative act in which a new
product emerges from the knowledge of previous products
and experience in response to a set of needs. Associated
with the process of design is:

¯ the importance of experience, where novice designers
rely on the experience of others as embodied in
previous designs and expert designers rely on the
richness of their own experience;

¯ a lack of generalisations, where there are few rules for
producing designs that do not have significant
exceptions;

¯ a lack of domain theories for synthesis, since the well
known aspects of a particular domain typically cover
analysis of designs as a deductive process; and

¯ the role of previous designs as stories, where designers
are more comfortable telling stories about their
experiences rather than providing domain theories or
heuristic rules.

In addition to this characterisation of the design process as
being creative, informal, and experience-oriented, the

t

C~ se I ~

De~ gn I~-- ~1

New Design Solution ~’

Figure 1. A CBR framework for design

A new design problem serves as an index to a case library.
A set of design cases are recalled and become the basis for
design case adaptation. A new design solution is then
included in the case library, allowing the system to learn as
it experiences new situations. This is a simplistic
framework, with some important characteristics: a new
design problem is not well defined, implying that the cases
that are recalled may not be a good fit; and that adaptation
is required in all situations, since every design is unique.
Since the problem is not well defined, there are issues
related to the way in which designs are indexed and
retrieved that are not well addressed by the CBR paradigm.

96

From: AAAI Technical Report WS-98-15. Compilation copyright © 1998, AAAI (www.aaai.org). All rights reserved.

Design case adaptation raises issues related to the need for
methods to change previous designs and to recognise the
adequateness of new designs. Such methods are not
inherent in the CBR paradigm itself.

The Need for Integrating CBR with other AI

Techniques

CBR as an approach to artificial intelligence assumes a
representation of experiential memory, without specifying
how that memory is indexed or acquired into the CBR
system. CBR as a problem solving paradigm assumes the
minimum of two processes: recall and adaptation. The
paradigm itself does not indicate what methods are used to
achieve these. Each of these areas have the potential for
integrating the concept of CBR with other problem solving
paradigms and/or AI techniques. For example:
1. Acquiring memory and memory indices: AI

techniques such as knowledge acquisition techniques,
and machine learning techniques such as conceptual
clustering are useful.

2. Recalling cases: machine learning techniques such as
induction can be used to develop a indexing tree; and
pattern matching and similarity measures can be used
for selecting cases from case memory.

3. Adaptation: various problem solving paradigms such
as constraint satisfaction, heuristic search, genetic
algorithms can be used depending on what kind of
knowledge is available.

Based on our experience in developing case-based
design systems (Maher et al 1995; Maher, 1997; Maher
and Gomez, 1996) we recognise the following bottlenecks
in developing case-based reasoning systems: representation
and adaptation.

The representation and recall of previous designs
requires a significant analysis and knowledge engineering
of the design domain. Designers are happy to tell stories
about their experience, but storing and recalling these
stories in a formal system (or even an informal hypermedia
system) is a difficult task. This is primarily due to the lack
of formal models for representing design products that go
beyond the documentation needed to manufacture or
construct the product. The current documentation of design
does not necessarily assist with the reuse of the design
episodes, but rather provides information for the current
situation.

Adaptation of previous designs requires both case and
generalised knowledge. Design as a creative act implies
that design adaptation is not a simple process, in fact it
could be argued that adapting previous designs is the core
of the design synthesis process. This aspect of CBR is not
well developed and requires an analysis of the domain
knowledge in order to achieve any kind of assistance or
automation. The difficulty of this aspect of case-based
design is reflected in the tendency for many CBR design
systems to leave this part to the user, focussing of indexing
and retrieval as the main contribution of CBR to design

(see, for example, Maher and Pu, 1997). However, there
are other AI paradigms that can support this aspect of CBR
design.

In the next sections, the integration of CBR with other
AI techniques is shown to address the adaptation
bottleneck and the development of indexing and validation
knowledge.

Adapting design cases using GAs

Adapting design cases requires techniques for changing
and combining design cases, an inherently generative
process, and techniques for evaluating the proposed design
solution, an inherently analytical process. The types of
knowledge-based methods applied to this part of the CBR
cycle includes heuristic search and constraint satisfaction.
One disadvantage that these methods have in common is
the knowledge intensive nature of the methods for both
generating proposed solutions and analysing a proposed
solution.

As an alternative, we are exploring the use of Genetic
Algorithms (GA’s) (Maher and Gomez, 1996) to perform
design case adaptation. GAs have several advantages with
respect to most knowledge-based methods: they require
less domain knowledge in order to search a space, while
still producing "feasible" results; they are more flexible in
that they are not limited to describing design cases using a
pre-defined scheme with a fixed set and a fixed number of
variables; and they inherently combine bits and pieces
from several past experiences in order to solve a new
problem, a capability that seems necessary for creative
design.

Genetic Algorithms (GAs) provide an alternative
traditional search techniques by simulating mechanisms
found in genetics. Three notions are borrowed from
biological systems:

¯ the phenotype, which can be a living organism for
biological systems or a design solution for design
systems;

¯ the genotype, which is a way of representing or
encoding the information which is used to produce
the phenotype; and

¯ the survival of the fittest, which determines whether a
genotype survives to reproduce.

A genetic algorithm starts with a population of potential
design solutions, represented as genotypes. The partially-
matching retrieved design cases provide the initial (seed)
population for the genetic algorithm. Assuming a set of
attribute-value pairs represent a design case, the set of
attributes are equivalent to the genotype of a design. The
values that are associated with the attributes in the
description of a case represent the structural or behavioural
embodiment of a specific design. The set of attribute-value
pairs that make up a case description are collectively
equivalent to the phenotype of a design.

The genetic algorithm operates on individual genotypes
by randomly mating and mutating them, detecting any
changes in the corresponding phenotypes, determining if

97

any of the resulting phenotypes is good enough to
represent a solution to the problem being solved, and
repeating the process if not. Each phenotype is a potential
solution to the design problem being solved. New
potential solutions to the problem are generated through
the combination of genotypes.

The first step required in the genetic algorithm is to
convert the case representation of a design, which can be
considered to be its phenotype, into a genotype
representation of it. This genotype representation can be
manipulated using the traditional genetic algorithm
operators of crossover and mutation. The offspring
genotypes resulting from this can be mapped back into
phenotype form by assigning values to the genes in the
genotypes. This results in new case-like descriptions that
represent new potential solutions to the design problem
being solved. The new phenotypes are evaluated to
determine their feasibility as solutions to the design
problem, and as potential "parents" for the next cycle (if
any) of the genetic algorithm, and the process can be
repeated, continuing until a satisfactory solution is found.
Figure 2 illustrates the genetic algorithm for case
adaptation.

This approach to design case adaptation provides a
method for combining and changing design cases that
requires little domain knowledge during the generative
stage. The advantage of this approach is that it does not
require formal domain knowledge for the generative
aspects of design case adaptation. The genetic algorithm
approach to design case adaptation requires the
consideration of two issues: the evaluation of designs
requires knowledge in the form of a fitness function and
the representation of complex systems as genotypes
requires a consideration of the structure of the
phenotype/genotype representation. Although the GA
provides a knowledge lean mechanism for generating
possible designs, there are still the two bottlenecks:
handcrafting the representation of cases as both genotypes
and phenotypes, and the knowledge intensive task of
evaluating alternative designs.

Learning recall and adaptation knowledge
from case libraries

The development and implementation of design case
libraries is an ongoing task. Often the domain is better
understood after the case representation has been
determined, and would be done differently if the project
started again. In this section, AI techniques are used to
learn indexing and adaptation knowledge from case
libraries to ensure that the knowledge used during these
tasks is based on the content of case memory, rather than
on a preliminary understanding of the domain.

We have developed a multimedia case library of
buildings that focus on structural design (Maher, 1997).
The library is referred to as SAM, for its use in teaching

Structures And Materials to undergraduate architecture
students.

Design Case Adaptation

Selection

=,_/ Phenotype ==>/

~// Gen°type/

/Oo ot o.o ovor/
/ and mutation /

/ Genotype==>/

/ Phenotype /

/ Phenotype /

/ va,oa,io /

yes

@
it

Figure 2. Design case adaptation using a GA

In developing SAM, we considered:
¯ the need to represent and manage complex design

cases,
¯ the need to formalise a typically informal body of

knowledge or experiences.
Design in any domain usually involves the development

and understanding of complex systems. The complex
representations needed to adequately capture a design case
have introduced challenges to CBR systems. The CBR
paradigm assumes that there is a concept of "a case", but in
most design domains this concept is not simply "a case"
but a complex set of experiences and decisions resulting in

98

a complex system. Three approaches
complexity are:

to addressing

/ /
Parsers

Text
Image

mainly for structure-valued data (Fayyad et al, 1996b;
Williams and Huang, 1996).

Indexing
Scheme

Vocabulary

Indexing tree
JAlgorithms

Adaptation
Knowledge

Adaptation rules

Numerical relationships

Clustering
Rule learning
Data Analysis

Figure 3. Overall process for knowledge discovery in design case libraries

¯ a case is a hierarchy of concepts, or subcases
¯ a case is represented by different views
¯ a case is presented as multimedia

Case-based knowledge engineering inherited the
methods used in the development of expert systems. The
indexing scheme is generated either through the
knowledge acquisition technique of interviewing the expert
to identify the critical features, or through machine
learning techniques to identify the most discriminating
features by induction. The current approach to developing
the adaptation knowledge is similar: the expert provides
the rules and/or models of relevance. As a result, the shift
in knowledge-base paradigm from expertise to experience
identified new problematic issues related to the knowledge
intensive indexing, retrieval, adaptation and maintenance
of cases. However, this knowledge is not easily captured;
the process is time-consuming, painstaking and
complicated, requiring carefully developed questioning
strategies, observational procedures and analysis methods.
A logical consequence is the increasing attention of the
case-base reasoning community towards machine learning
algorithms (Hanney and Keane, 1996).

We are exploring the use of data mining and knowledge
discovery (KD) techniques, recently developed for
identifying useful implicit information coded in databases
(Chen et al., 1996), as a way of overcoming these
difficulties. Viewing knowledge engineering as a discovery
process means examining a data source for implicit
information that one is unaware of prior to the discovery
and recording this information in explicit form. This spans
the entire spectrum from discovering information of which
one has no knowledge to where one merely confirms a
well known fact. Current KD methods are developed

Discovering implicit knowledge in case bases is
substantially different to data mining (Maher and Simoff,
1997). The data organisation units in database mining are
the data columns. Inside the case base the organisational
unit is the case, which comprises a variety of data types
and formats. Knowledge discovery then, in our use of the
term, involves finding patterns in primarily unstructured,
multimedia data.

Our model for knowledge discovery in design case
libraries, as illustrated in Figure 3, takes a hypermedia
library of cases, uses a number of knowledge discovery
techniques in two phases to generate domain knowledge.
We are using SAM as an existing multimedia
representation of structural design cases and apply
knowledge discovery techniques that can find patterns in
the cases. Specifically, we are interested in finding patterns
in the cases that can assist with indexing and adapting
cases as a way of supporting the designer in being
reminded of a previous experience and being informed
when an adaptation lies outside the experience base.

We use two phases of knowledge discovery roughly
corresponding to data-driven and expectation-driven
approaches. In the first phase, the data-driven phase, a
parser is applied to the case library to extract a set of
relevant features. In the second phase, the features
abstracted from the cases are used as input to various
machine learning techniques to contribute to the indexing
scheme and/or adaptation knowledge. Parsing cases to find
relevant features produces a vocabulary and frequency of
occurrence. We use two kinds of parsers, text parsers and
image parsers, reflecting the multimedia nature of the
design cases.

Once a set of features has been abstracted from the case
description, there are several relevant techniques for
transforming the features into knowledge patterns. The
input, or training set, can be carefully constructed from the

99

New Design Problem

1=
KnowledgeJ

Design
Case

Recall

Case
Library

Design / I~1
Case ~ ["

Adaptation J~ .~~

Knowledge ~
New Design Solution~" [J

Knowledge
Discovery

Figure 4. An enhanced model of CBR for design

features found during the parsing phase. Although the
content is based on the case library, the format can be
determined by the needs of the particular learning
technique. The idea of expectation-driven discovery means
that we start with an hypothesis of the knowledge to be
discovered, such as an indexing scheme, and the learning
algorithm modifies the knowledge. We have identified
several classes of learning techniques that can be applied
for knowledge discovery.

Conceptual clustering: These techniques are used in the
machine learning community to synthesise generalised
clusters from a training set of examples. In our project we
use the vocabulary from the parsers above as the training
data for conceptual clustering. The result of the application
of these techniques will be a classifier tree that can
partition the case library according to meaningful terms.
Techniques for conceptual clustering are: CLUSTER
(Michalski and Stepp, 1983), or more recent approaches
specifically for clustering design concepts (Maher and Li,
1994).

Data analysis techniques: These techniques operate on
the numerical valued parameters to find approximated
linear equations that reflect the data in the cases. Candidate
techniques for learning about numerical relationship are:
EFD: Empirical Formula Discovery (Maher and Li, 1994),
Interval Analysis (Voschinin et aL, 1993) and Function
Discovery (Wu and Wang, 1991).

Rule learning techniques: These techniques are applied
to the feature-valued pairs (numeric, boolean, symbolic).
The idea is to compute the feature-differences that exist
between cases and examine how these differences relate to
differences in case solutions. Candidate techniques for rule
learning are described in (Fayyad et al., 1996a; and
Hanney and Keane, 1996).

Discovering knowledge from case data is still in its
infancy. Part of the success of case-based reasoning as an

interactive knowledge-based computing model is credited
to its less demanding knowledge engineering and instant
learning loop embedded in the model. However, the reality
of the CBR approach is that knowledge engineering is still
a critical and difficult part of the application. With the use
of knowledge discovery techniques, we have an enhanced
model of case-based reasoning, as shown in Figure 4,
which includes AI techniques for knowledge formulation.

Summary

CBR as a framework for design puts the emphasis on the
representation previous design cases and focuses reasoning
on this representation. This is appropriate given the lack of
formal knowledge about how designs are generated.
However, the framework of CBR for design requires a
consideration of other AI techniques as a means of
representing and using design knowledge that is not easily
or appropriately embedded in cases. Two of the AI
techniques we consider here are: knowledge discovery for
finding generalisations from case memory and genetic
algorithms as a mechanism for case combination for the
generation of new designs.

Acknowledgments

The ideas presented here are based on research done by Dr.
Simeon Simoff in the areas of multimedia case based
design and knowledge discovery, and by Andres Gomez de
Silva Garza in the area of genetic algorithms for design
case adaptation. This research has been supported by the
Australian Research Council.

100

References
Chen, M-S., Han, J. and Yu, P.S. 1996. Data mining: an

overview from a database perspective. Knowledge and
Data Engineering, 8 (6):866-883.

Fayyad, U.M., Piatetsky-Shapiro, G. and Smyth, P. 1996b.
From Data Mining to Knowledge Discovery in
Databases, AI Magazine, 17 (3):37-54.

Hanney, K. and Keane, M.T. 1996. Learning adaptation
rules from a case-base. In I. Smith, B. Faltings (eds),
Advances in Case-Based Reasoning, 179-192,
Heidelberg:Springer.

Maher, M.L. 1997. SAM: A multimedia case library of
structural designs. In Y.T.Liu, J-Y. Tsou and J-H. Hou
(eds), CAADRIAf97, 5-14, Taiwan:Hufs Publisher Inc.

Maher, M.L., Balachandran, B., Zhang, D.M. 1995. Case-
Based Reasoning in Design, New Jersey: Lawrence
Erlbaum Associates.

Maher, M.L. and Li, H. 1994. Learning Design Concepts
Using Machine Learning Techniques, Artificial
Intelligence for Engineering Design, Analysis, and
Manufacturing, 8(2):95-112.

Maher, M.L. and Gomez de Silva Garza, A. 1996. The
Adaptation of Structural System Designs Using Genetic
Algorithms. In Proceedings of the International
Conference on Information Technology in Civil and
Structural Engineering Design--Taking Stock and Future
Directions, Glasgow, Scotland.

Maher, M.L. and Pu, P. eds. 1997. Issues and Applications
of Case-Based Reasoning in Design, New Jersey
:Lawrence Erlbaum Associates.

Maher, M.L. and Simoff, S. 1997. Knowledge discovery in
multimedia design case bases. In B. Verma and X. Yao
(eds), Proceedings ICCIMA’97, 6-11, Gold
Coast:Griffith University.

Michalski, R.S. and Stepp, R. 1983. Learning From
Observation: Conceptual Clustering, in Michalski, R.S.,
Carbonell, J.G., and Mitchell, T.M. (eds) Machine
Learning: An Artificial Intelligence Approach, Morgan
Kaufmann.

Voschinin, A.P., Dyvak, N.P. and Simoff, S.J. 1993.
Interval methods: theory and application in design of
experiments, data analysis and fitting. In E. K. Letzky,
(ed.), Design of Experiments and Data Analysis: New
Trends and Results, 11-51, Moscow:Antal.

Williams, G. and Huang, Z. 1996. A Case Study in
Knowledge Acquisition for Insurance Risk Assessment
using a KDD Methodology, Data Mining Portfolio - TR
DM 96023, CSIRO.

Wu, Y.-H. and Wang, S. 1991. Discovering functional
relationships from observational data. In G. Piatetsky-
Shapiro and W. J. Frawley (eds), Knowledge Discovery
in Databases, 55-70, Cambridge: AAAI Press/The MIT
Press.

101

