
Fourier Neural Networks

Adrian Silvescu
Artificial Intelligence Research Group

Department of Computer Science
Iowa State University, Ames, IA 50010
Email:silvescu@cs.iastate.edu

Abstract

A new kind of neuron model that has a Fourier-like
IN/OUT function is introduced. The model is dis-
cussed in a general theoretical framework and some
completeness theorems are presented. Current exper-
imental results show that the new model outperforms
by a large margin both in representational power and
convergence speed the classical mathematical model of
neuron based on weighted sum of inputs filtered by a
nonlinear function. The new model is also appealing
from a neurophysiological point of view because it pro-
duces a more realistic representation by considering the
inputs as oscillations.

Introduction
The first mathematical model of a neuron was proposed
by McCulloch&Pitts(1943). The underlying idea that
this model tries to capture is that the response func-
tion of a neuron is a weighted sum of its inputs filtered
through a nonlinear function: y = h(

∑
wixi + θ).

Much progress has been done in the field of neural
networks since that time but this idea still remained a
very fundamental one. Although the model of the com-
putational unit(neuron) per se is simple, neural net-
works are powerful computers, higher levels of com-
plexity being achieved by connecting many neurons to-
gether.

In this paper we try to propose more general and
powerful models for the neuron as a computational unit.
There are may motivations for this investigation.

One of them is the fact that although the power of
computers increased quite a lot since 1943 we are still
not able to simulate and train but toy-size neural net-
works. So although from a theoretical point of view
creating complexity out of very basic components is de-
sirable, from a practical point of view more powerful
models of the computational units(neurons) are more
appealing because they can help reduce the size of the
networks by some orders of magnitude and are also
more suitable to coarse grained paralelization. More
complex and powerful computational imply also a more
compact representation of the information stored in the
network, making it an improvement from an Occam ra-
zor point of view.

Another motivation towards more general and elab-
orated models neurons comes from the discoveries in
neurobiology that show more that more complex phe-
nomena take place at the neuron level.

Although apparently different from the early model
of McCulloch&Pitts our model is still based on the same
kind of idea (although in a more general way) ”of com-
puting the output of the neuron as weighted sum of the
activations produced by the inputs”.

We will first introduce a general framework and dis-
cuss some of the issues that appear. Then a particu-
lar model, the Fourier Neural Networks is introduced
and closely examinated. Next some specific theoreti-
cal results are presented followed by experimental re-
sults. Finally the conclusions and further development
are discussed. Note: The Fourier Neural Networks were
introduced in Silvescu(1997).

A general framework
In this section we will introduce a general model for the
computation function of the neuron. We begin with a
continuous model that will be further discretised for
computational reasons.

The model

Let x = (x1, ..., xn) ∈ Rn, y = (y1, ..., ym) ∈ Rm and
D ⊆ <m then the output function of the neuron on
input x will be given by

f(x) =
∫
D

c(x)φ(x,y)dy (1)

What does this formula mean? - The output function
f is a sum of some characteristics of the input x given
by φ(x,y) wheighted by the coefficients c(y). So in
a certain sense the old principle of weighted sum of
the inputs still applies only that in a more general way,
inputs being replaced by some characteristics of of them
φ(x,y).

If we would like to have our outputs range in [0, 1], as
in many traditional neural networks we can transform
the previous formula into:

From: AAAI Technical Report WS-99-04. Compilation copyright © 1999, AAAI (www.aaai.org). All rights reserved.

48

From AAAI Technical Report WS-99-04. Compilation copyright © 1999, AAAI. (www.aaai.org). All rights reserved.

f(x) = h(
∫
D

c(x)φ(x,y)dy) (2)

Where h is a nonlinear function such as the sigmoid:

h(x) =
1

1 + e−tx

Without loss of generality but for the sake of sim-
plicity we will concentrate our discussion on the equa-
tion (1), the results being easily extendable also for the
equation (2).

Equation (1) is a particular case of what it is called
in functional analysis an integral operator. An integral
operator U following Kantorovitch(1992) is defined as
follows:

Definition Let S, T two spaces with measures an let
X and Y two functions spaces on S and T respectively.
Then an operator U : X → Y is called an integral op-
erator if there exists a measurable function K(s,t) such
that, for every x ∈ X, the image y = U(x) is the func-
tion:

y(s) =
∫
T

K(s, t)x(t)dt

The function K(s,t) is called the kernel of U.
Depending on the particular choice of the kernelK we

can get different function subspaces of Y as an image of
U, U(X). Since our goal is get powerful computational
units the we will seek kernels that produce ”extensive”
images U(X) of operator U.

Some solution for equation (1)
Mathematical Analysis provides a few solutions for the
equation (1) that we will examine next:

Fourier integral formula :
For every f ∈ L2(R) we have:

f(t) =
∫
R

c(ω)eiωtdω

Where
c(ω) =

1
2π

∫
R

f(τ)e−iωτdτ

And
√

2πc(ω) is the Fourier transform of the func-
tion f on ω. This formula has been extracted from
Walker(1988).

The windowed Fourier integral formula :
For every f ∈ L2(R) we have:

f(t) =
∫
R

∫
R

c(ω, θ)g(t− θ)eiωtdωdθ

Where

c(ω, θ) =
1

2π

∫
R

f(τ)g(τ − θ)e−iωτdτ

And
√

2πc(ω, θ) is the Fourier transform of the function
f , with the window g centered in θ, on ω. This formula
has been extracted from Gasquet(1990). An example
of window function is given in the figure 1.

-

6

�
�
��

A
A
AA

0

g(x)

Figure 1: Example of window function

The wavelets integral formula :
For every f ∈ L2(R) we have:

f(t) =
∫
R

∫
R

c(a, b)ψ(a, b, t)dadb

Where

c(a, b) =
1
a2C

−1
ψ

∫
R

f(τ)ψ(a, b, τ)dτ

ψ(a, b, t) = |a|−1/2
ψ

(
t− b
a

)

Cψ = 2π
∫
R

|ξ|−1|ψ̂(ξ)|
2
dξ

And ψ̂(ξ) is the Fourier transform of the function ψ on
ξ. with ψ satisfying Cψ <∞.
a2Cψc(a, b) is called the Wavelet transform of the

function f on ψ(a, b) centered in b and having the scale
a.

An example of the ψ function is the second derivative
of the gaussian (also called mexican hat):

ψ(t) =
2√
3

(1− x2)ex
2/2.

This formula has been extracted from
Daubechies(1992).

The multidimensional extension
Although the previous formulae are for functions de-
fined on one-dimensional spaces, they can be naturally
extended for many dimensions. We will only give the
multidimensional extension for the Fourier integral for-
mula that is of particular interest for us.

f(x1, ...xn) =
∫

Rn

c(ω1, ..., ωn)ei(ω1x1+...ωnxn)dω1...dωn

49

Where

c(ω1, ..., ωn) =
1

(2π)n

∫
Rn

f(t1, ...tn)e−i(t1x1+...tnxn)dt1...dtn

What can we do on a computer?
We can discretize equation (1) by approximating the in-
tegral using the rectangular or trapezoidal rule or Rie-
mann sums in the following way:

fd(x) =
∑
y1...yn

c′(y1, ..., yn)φ(y1, ..., yn,x) (3)

Where

c′(y1, ..., yn) = δ(y1, ..., yn)c(y1, ..., yn) (4)

Where δ(y1, ..., yn) is the measure of the interval cen-
tered in (y1, ..., yn). Note: c′(y1, ..., yn) represents the
factor that is not dependent on x in the Riemann sums.

Observation: Because of the way integral was defined
it follows that for every function f that can be written
of the form given by equation (1) there exists a sequence
of functions (fdn)n∈N that converges pointwise to f .

Recapitulation
In this section we introduced a new model for the neu-
ron as a computational unit given by the equation (1).
Then we discretized the equation (1) and we obtained a
discrete model given by equation (3) that can approx-
imate arbitrarily well our continuous model (pointwise
convergence). This model is a very general one and can
be used for every solution of equation (1).

In the next section, we will focus on a particular
model (the Fourier integral formula) for which we will
obtain further properties in the following sections.

Fourier Neural Networks
The neuron model
In the case of the Fourier integral formula the dis-
cretized model will be given by the following equation:

fd(x) =
∑
y1...yn

c′(y1, ..., yn)ei(y1x1+...+ynxn) (5)

We will modify this formula in two ways in order
to make it more suitable for computer implementa-
tion. First we will use the cosinus representation
for ei(y1x1+...+ynxn), and we will also filter the output
through the sigmoid function in order to obtain outputs
in the interval [0, 1]. (Note: This last step is optional)

So the final form of the output function for our neu-
ron is:

f(x1, ...xn) = sigmoid(
∑
i

ci

n∏
j=1

cos(ωijxj + ϕij))

Neurophysiological justification
From a neurophysiological point of view, the Fourier
neural networks are closer to reality because they model
the signals exchanged between neurons as oscillations
making our model to agree better with discoveries made
in neurobiology. The same remark can be also made
about wavelets and windowed Fourier integral formula
which model the signals as spikes of oscillation. Our
neuron model implements also a type of neural archi-
tecture discovered in the brain called ΣΠ units.

Comparison with the Discrete Fourier
Transform(TFD)
For every function f we can associate a Fourier series
and for functions satisfying certain properties we can
write

f(x1, ..., xn) =
∑

m1,...,mn

c(m1...mn)ei(m1x1+...+mnxn)

Where m1, ...,mn ∈ N and

c(m1, ...,mn) =
1

(2π)n

∫
Rn

f(y)e−i<m,y>dy

Where m = (m1, ...,mn) and y = (y1, ..., yn).
The main difference between computing the Discrete

Fourier Transform(DFT) and adapting the neuron us-
ing the gradient descent method is statistical versus ex-
act information. Let us consider for example a func-
tion that is composed out of two oscillations of phase 0
and frequencies 2π9/20 and 2π11/20 and let us make a
Discrete Fourier Transform using 2π/10 as the main fre-
quency. Then the plot of the Fourier coefficients against
the frequency multiplicator n will be a function that
has all the coefficients nonzero. The adaptive method
should find the two frequencies and set the coefficients
to the corresponding amplitudes. In this way adaptive
method offers an exact frequency information versus a
statistical information given by the DFT.

Theoretical results
In this section we will enunciate two theorem from
Walker(1988) concerning the convergence Multidimen-
sional Fourier Series and we will comment on the impli-
cations of these theorems regarding the power of repre-
sentation of our model of neuron.

Theorem. (MSE convergence) The complex expo-
nential system {ei<m,x>} (where m = (m1, ...,mn)
and x = (x1, ..., xn)) is complete in the space of n-
dimensional continuos functions on [−π, π]n. That is
for every continuous function f on [−π, π]n we have

lim
m1,...,mn→∞

∫
[−π,π]n

|f(x)− Sm(x)|2dx = 0

Where Sm is the partial Fourier series corresponding to
the limits m.

50

Theorem. (Uniform convergence) If f : X → Y is
continuous with period 2π in every subset of compo-
nents then the Fourier series for f converges uniformly
to f .

Since our neurons are capable of representing any
partial Fourier series it follows that the previous the-
orems hold for also for or neuron models giving us a
characterization of their power of representation.

So in conclusion (with a minor changes of the previ-
ous theorems) we have that our neurons are capable of
approximating arbitrarily well every continuous func-
tion defined on [0, 1]n.

The implementation and experimental
results

The training method for our neural networks was gra-
dient descent with momentum plus a factor given by
the convergence accelerator that is discussed in next.

The convergence accelerator
The code for the convergence accelerator is the follow-
ing:

if (abs(d)<acsm) and (d<>0)
then

acs:=(1/m)*factor*sgn(d)*((acsm*acsm)/d)
else

acs:=0;

The basic idea of the convergence accelerator is the
following: If the last adjustment of the weights (gradi-
ent + momentum) is to very small then we are on a
plateau and we are going to introduce an extra adjust-
ment the is inverse proportional with the value of the
normal adjustment(the flatter the plateau is the faster
we will go).

This convergence accelerator seems to improve by a
few orders of magnitude the convergence speed and it
is also useful for getting out of local minima.

Experimental results
The main thing we looked after in our experiments was
to try to get an estimate of the power of representation
and the convergence speed.

The Fourier Neural Networks have been tested on
all the 512 boolean functions that can be defined on
matrices 3x3 and on all the 256 boolean functions with
3 variables (using only two terms in the sum of equation
(5)) and managed to converge on average more than 100
times faster than the classical neural networks using 8
neurons in the hidden layer.

We also tested the Fourier Neural Networks on all
the 65536 booolean functions that can be defined over
matrices of 4x4. The functions have been learned on
average after 1.921 random initializations. More exact
figures are presented in the following table: (the fist col-
umn representing the number of random initializations,
the second column the percentage of functions learned
using that number of initialization, the third column is

the cumulative percentage of the functions learned and
the fourth column is the cumulative number of func-
tions learned out of the total of 65536).

1 : 64.30% 64.30% 42142
2 : 17.33% 81.63% 53498
3 : 4.87% 86.50% 56690
4 : 6.05% 92.55% 60656
5 : 2.88% 95.43% 62543

10 : 0.26% 99.13% 64968
20 : 0.02% 99.90% 65472
34 : 0.00% 99.99% 65527
65 : 0.00% 100.00% 65536

Conclusions and further work
We proposed very general framework that is suitable
for studying models that belong to the paradigm of
”weighted sum of input characteristics” that general-
izes the model proposed by McCulloch&Pitts(1943) .
We also explored in more detail a particular model that
belongs to this paradigm: the Fourier Neural Networks,
that proved to be appealing from neurobiological, the-
oretical and practical point of view.

Further work we believe could investigate the behav-
ior of other kernel functions (such as wavelets and win-
dowed Fourier but not only). Another interesting di-
rection would be toproduce extensive reports of exper-
imental results on real world applications, that are the
ultimate test for every learning scheme.

References
Daubechies I., 1992, Ten Lectures on Wavelets.
Gasquet C., Witomski P., 1990, Analise de Fourier et
applications.
Walker J., 1988, Fourier Analysis.
Harris J. W., Stocker H., 1998, Handbook of Mathe-
matics and Computational Science.
Kantorovitch L.V., Akilov G.P., 1992, Functional
Analysis.
Silvescu A., 1997, A new kind of neural networks, Mas-
ter disertation thesis.
McCulloch W. S., Pitts W., (1943), A new kind of
neural networks, Master disertation thesis.

51

