
Optimization Methods for Constraint Resource Problems

Daniel Sabin and Eugene C. Freuder
Department of Computer Science

University of New Hampshire
Kingsbury Hall

Durham, NH 03824
dsl, ecf@cs.uni~.edu

Abstract

In this paper we present resource optimization meth-
ods for solving efficiently synthesis problems in a
constraint-based framework. We obtain a tight lower
bound of the problem optimum by adding redundant
constraints that take into account the "wastage" in a
partial solution. Abstraction through focusing on rele-
vant features permits added interchangeability to deal
with equivalent sets of partial solutions. Combining
these two ideas allows us to discover fast the optimal
solution, and also to prove very quickly its optimality.

Introduction

Many synthesis tasks can be reduced, on an abstract
level, to the generic task of "assembling" some "arti-
fact" from a set of "building blocks" (e.g. components
in configuration and design, actions in planning, repair
actions in therapy, qualitative models in model synthe-
sis, etc.).

Central to synthesis is the notion of resource. An
important part of the knowledge associated with a par-
ticular application domain is represented by producer-
consumer relations between various parts of the ar-
tifact. They introduce cumulative restrictions on re-
source properties of a set of objects. All the resources
in the model must be balanced, i.e. the amount of re-
source produced should be equal or greater than the
amount used. In the majority of synthesis tasks, the
optimization criterion implies the minimization or max-
imization of some resource and this is what eventually
dictates the structure of the artifact.

In this paper we present resource optimization meth-
ods for solving efficiently synthesis problems in a
constraint-based framework. Our original contribution
is twofold:

¯ We show how to obtain a tighter lower bound of the
problem optimum by adding redundant constraints
that take into account the "wastage" in a partial so-
lution.

¯ We show how abstraction through focusing on rel-
evant features permits added interchangeability to
deal with equivalent sets of partial solutions.

In Section 2 of the paper we describe a class of prob-
lems which is representative for most synthesis tasks.
Section 3 describes briefly our algorithms. Each of the
following two sections, on the lower bound computa-
tion and on the use of abstraction and interchangeabil-
ity, have a subsection presenting a running example,
demonstrating that these techniques can significantly
reduce the search effort for finding the optimal solution
and proving its optimality. Section 6 presents addi-
tional experimental evidence to support our claims.

Problem Definition

The problem we are interested in is very general. We
are given a set of consumers, each characterized by the
amount of resources it consumes. Available are several
types of producers, each described by .the amount of
resources it can provide. A cumulative expression on
some of the resources is designated as the cost of a
solution. The task is to find the optimal set of producers
such that:

¯ all the resources are balanced, and

¯ the cost of the solution is minimal.

Instances of this problem appear as subproblems in
any synthesis task. Because the motivation of our work
lies mainly in solving configuration tasks, the concrete
examples used throughout the paper come from the con-
figuration domain. Although we use simplified versions
of real problems, the main aspects are preserved.

Example 1

Consider this problem, adapted from (ILOG 1998).
control system consists of a set of racks with electri-
cal connectors in which one can plug different types of
electronic cards. A rack has 3 connectors, and each
connector can receive exactly one card. In addition to
the number of connectors it provides, each rack is char-
acterized by the maximal power it can supply. Cards
are characterized only by the power they use. Available
are two types of racks, capable of providing 90 and 110
units of power, and four types of cards, consuming 20,
45, 50, and, respectively, 65 units of power. The num-
ber and type of cards which can be connected to a rack

From: AAAI Technical Report WS-99-05. Compilation copyright © 1999, AAAI (www.aaai.org). All rights reserved.

is- limited by two factors: the number of electrical con-
nectors the rack has, and the maximal power the rack
can provide¯

The problem asks for the number and type of racks
which can accept a particular set of cards, such that
the overall power supplied by the racks is minimal.

Assume we are required to configure a con-
trol system that must accommodate four cards,
{C2o, C45,C5o,C~5}, one of each type available. We
start by creating one instance of RACK, R1, in which we
plug cards C2o and C45. None of the other two cards
can use R1 anymore, this would require more than the
maximum 110 units of power a rack can provide. We
add a new rack to the system, R2 and plug in it Cso.
The power limitation again prevents us from using the
same rack for C65, so we end up by using three racks.
Since we are interested in minimizing the total maximal
power, we choose for each of the three racks the lowest-
power variant able to satisfy the request, thus obtaining
a solution with cost 270. This gives us an upper bound
for the optimal solution.

Continuing the search in a backtracking manner, we
eliminate C4~ and plug C20 and C5o in R1, which allows
us to use the same rack for both C’45 and C’65, making
complete use of the power provided by R2. In fact this
new solution, of cost 200, is optimal. To prove its op-
timality we have to show that a solution of cost lower
than 200 is not possible. Actually, we can restrict the
new solution even more: the next possible combination
of lower cost, two small racks, has a cost of 180.

200=C~ 180 |80<C< 180 180~;C~; 180

270~C~ 180 270=C~ 180

Figure 1: Snapshot of the search tree for an optimal
solution.

We use Branch and Bound to reduce the amount of
unnecessary work performed. The algorithm abandons
a search path when the cost of the partial solution, i.e.
the lower bound, exceeds the upper bound. On our
example though, it turns out that the lower bound is
not tight enough to really do any pruning. As we can
see in Figure 1, it exceeds the upper bound too late,
only after two racks have already been added to the
system. This is because the lower bound computation

is based solely on racks. To account for the amount of
power left unused in each rack, the lower bound should
consider both the maximal power of the existing racks,
and the amount of power required by the cards which
have not been plugged in yet. This would allow the
algorithm to discover immediately after plugging C2o
and C65 in R1 that this partial solution actually incurs
a minimum cost of 185 units, and therefore cannot lead
to a solution of cost 180. In Section 4 we show how to
achieve this by using specialized redundant constraints.

Example 2

Let us change the problem slightly. The two types of
racks available provide 150 and 200 power units and the
four types of cards require 20, 40, 50, and, respectively,
75 power units. The set of cards which must be plugged
¯ ¯ 1 2 3 4 5 6 p7 8into racks is { C~o, C~o, C~o, C~o, C~o, C~o, C~o, C~o,

9 10 11 12 13 I4 15C~5, C~5, C~6, C45, C~0, C50, C’~6 }. The lower index
represents the amount of power the instance requires.
Instances requiring the same amount of power are of
the Same type. A snapshot of the search tree associated
with this example is shown in Figure 2. We start again
by creating an instance R1 of rack, in which we plug
cards (721o through C~5. The power provided by Rl, 200
power units, is consumed entirely. A new rack instance,
R2, receives cards C4l° through C~os, which consume 170
power units of the maximum 200 it provides. Finally,
the last two cards, C~04, C~5, are plugged in the third
rack, R3, and use 125 power units out of the maximum
150 the rack provides. The cost of this first solution
is 550, and gives us an upper bound for the optimal
solution. Since the increment for the cost is 50, the
next solution will be better only if it has a cost of at
most 500.

The optimal solution actually has a cost of 500 power
units. It turns out that finding it and proving its op-
timality is more difficult then in the previous example.
This is due to the fact that most of the search effort is
spent on exploring sets of equivalent partial solutions,
introduced in the search space by the use of multiple
instances of the same type of card. In the figure we
point out an example. Since the only restriction im-
posed on the cards is on their power consumption, al-
though involving different values (card instances), the
partial solutions in the three sets (1), (2) and (3)
equivalent. After the algorithm already investigated a
solution assigning two 45 power unit cards to R2 (set
(1)), there is no point in trying other combinations
two similar cards (sets (2) and (3)). Therefore
prune from the search tree the grayed regions without
losing any problem solution. We show in Section 4 how
to eliminate equivalent partial solutions efficiently using
abstraction and interchangeability.

Problem represen/~ation
The constraint satisfaction problem (CSP) paradigm
provides an elegant and natural framework for repre-
senting and solving a large variety of reasoning tasks,
including synthesis, and for the past decade has been

84

250

I ~0

I~0

 L,to
150

ItO
2O0

,I
ClOff(l ~(2C13 CI4 ~4~5
CIO ~(I ~(2 CI3 ~(4

nso clown 0,(2o3 0(4 0,(5
ClO 0,(I (M~2q~(3 C14

150 CI0 {~I (~2 q~(3 C14 {~(5

CIO~I 0(2 ~<3 0(4 C

~
1~0 CIO0(I 0(20(30(40(5

2~0 " ~OCII CI2CI3CI4(~4~
/

150" ~(OCI I CI2 CI3 ~40(5

I!0 ~0CI l C12 ~3 C14{~(5

495 < C<~o
525 < C <oo
C = 550 <oo

625 g Cfi 500
6{X) < Cfl 5iX)
525 < C/~ 500
55O < c~ 5O0
525 <: c/~ 5oo
515~ C~ 500
515~ C/~ 5(X)
5~5~ C~ 500
540< C~ 5(x)
565< c~ 5OO
515~ C~ 5O0
515 ~ C~ 500
515~ C~ 50(1
54o< c~ 5oo
565 < C/~ 5OO
505 ~ C~ 500
530g C~ 500
555 < c~ 5OO
530~ C/~ 500
555 ~: C~ 50O

530 ~ C,~ 5(X)
a)5 ~ c.~ 5o0

515 < C~ 500
5t5-< c~ 5oo
515~; C~ 5(X)

Figure 2: Snapshot of the search tree for an optimal
solution.

widely accepted, both in academia and industry, as the
formalism of choice for dealing with optimization prob-
lems as well.

We model application domain objects as composite
constraint satisfaction problems, in a manner similar to
the one presented in (Sabin & Freuder 1996). Due
space limitation, we just mention that object proper-
ties, which characterize its function and performance,
are represented as variables, while various restrictions
and requirements are expressed as constraints.

A producer-consumer relation implies a bidirectional
connection between the objects involved in the relation.
We capture this by adding a port variable to the model
of each object that has resource properties. Ports are
characterized by base type and eardinality. The domain
of a port variable P<T> [m..n] is a set of objects of type
T, and the values the port can take are subsets of the
domain, of cardinality at least m and at most n. We
use the notation IPI to refer to P’s cardinality.

There are several types of constraints that can be
posted on port variables, two of which are relevant in
the context of our presentation:

¯ cardinality constraints, imposing a lower and/or up-
per bound on the number of objects that can be as-
signed to the port, e.g. IPI < 2, iPi > 0, etc., and

¯ cumulative constraints on attributes of the objects
assigned to the port, e.g. ~-~P.x < 100, where x is a
numeric attribute of instances of type T.

The model for the two examples described in the pre-
vious section is the following:

¯ Tim model for system consists of two variables:

- integer variable powersvsr~M with domain {0..oo},
and

- port variable raekssvsr~M < RACK>[1..oo].

¯ RACK is described by three variables:

- integer variable poweraAc~: with domain {90, 110}
and {150, 200}, respectively;

- port variable systemRAcK < SYSTEM>[1..1];
- port variable cards_RACK< CARD>J1..3].

¯ CARD instances are described by two variables:

- integer variable powerc,Ro with domain {20, 45,
50, 65} and {20, 40, 50, 75}, respectively;

- port variable raekscAao < RACK>J1..1].

¯ In addition, the model for objects of type SYSTEM
and RACK contains constraints expressing producer-
consumer relations:

- powersvsr~M = ~,rackssrsr~u.power
- power,~cK > ~_,cardsa~cr .power

¯ The cost of a solution is represented by the value of
the variable powersvsr~.

Algorithms

For the purpose of this paper we consider only complete
search methods because we are interested in proving the
optimality of the solution. A lot of research effort has
been invested lately in the study of branch and bound
variants of CSP search algorithms (Freuder & Wallace
1992) (Cabon, Givry, & Verfaillie 1998). Branch
Bound keeps track of an upper and lower bound for the
cost of the solution. The upper bound is the cost of the
best solution, and can be updated when a new solution
is discovered. The lower bound represents an estimate
of the cost implied by the current (partial) solution, and
gets monotonically updated as the algor!thm advances
on the solution path. These bounds are used for pruning
entire branches from the search tree. At each step of the
algorithm, the two bounds are compared against each
other, and once the lower bound becomes at least as
large as the upper bound~, it is clear that the current
search path cannot lead to a better solution, and is
abandoned. Obviously, the better (tighter) the bounds
are, the more pruning the algorithm achieves. Although
it is fairly easy to come up with a good upper bound,
in the majority of cases this is not true for the lower
bound (Givry, Verfaillie, & Schiex 1997).

Port variables instantiation
One way to implement a port variable V<T>[m..M] is
to maintain internally two sets of T instances, one rep-
resenting the current value, the other one the domain.
When the port is created, its domain consists of the

1We consider here that the objective is to minimize the
cost variable, but the same principle applies when we try to
maximize it

85

set of all T instances which exist at that time in the
model plus a wildcard instance *T, accounting for any
future instance of T that might be created. This repre-
sentation is similar to the one presented in (Mailharro
1998), although the implementation details seem to be
different.

The instantiation process we propose is fairly
straightforward. Using the set of constraints posted
on the port as a filter, inconsistent instances are elimi-
nated from the domain. All instances which passed the
filter, except for the wildcard, are moved to the current
value set. When the filtering phase ends, there are two
possibilities.

1. The cardinality of the current value is at least m. In
this case the port has been successfully instantiated.

2. The cardinality does not satisfy the lower bound re-
quirement. Again we are left with two possibilities.

(a) The domain is empty, i.e. the wildcard has been
rejected by the filter. In this case the port is con-
sidered to be closed. What this means is that no
instance of type T can satisfy (anymore) the re-
quirements imposed by the port, and therefore the
instantiation fails.

(b) The wildcard is still in the domain. The procedure
will first create a new instance of T and add it to
the domain of all ports with base type T which
have not been closed yet2. Then, the instantiation
process continues, with the new instance in the do-
main.

However, there is another aspect of the algorithm
that we would like to point out. A connection estab-
lished through ports is bidirectional. We capture this
aspect in our model by using pairs of complementary
ports. Assume that objects of type U have a port of
type T, say P<T>. Objects of type T must then have
a port of type L/, call it Q</4:>. Consider two instances,
x and y, of type/~ and T, respectively. Connecting y
to the port P of x means adding y to the current value
of P. This happens during the process of instantiating
P. Due to bidirectionality, x then must be added to the
current value of port Q of y as well. The implication of
this step is twofold. First, if adding x to Q would lead
to a constraint violation, then it is not possible to add y
to P either. Second, instances can be added to a port’s
current value even after the port has been instantiated,
as long as the port has not been closed yet.

Achieving Optimality through
Constraint Propagation

The search algorithm we use is not a Branch and
Bound algorithm, but achieves the same effect through
constraint propagation on redundant specialized con-
straints.

2We will show in Section 5 that this step can fail as well
due to global limitations on the total number of instances
of a given type.

the equality
ternally, the
mentally, as
Through the
and updates
able.

Our algorithm is based on a powerful CSP algorithm,
MAC (Sabin & Freuder 1994)(Sabin & Freuder 1997).
MAC uses constraint propagation for maintaining arc-
consistency during search. Every time the domain of
a variable is modified, the constraints in which the
variable is involved are responsible for propagating the
change to related variables. For more details on how
this can be done efficiently see the original papers.

MAC is a general-purpose CSP search algorithm. In
particular, it has no provision for finding optimal solu-
tions. However, we do not need to change the algorithm
for making it search for the optimal solution, we update
the problem instead. Each time a solution of cost C is
found, the constraint cost < C is added to the problem
to reflect the new upper bound, and then simulate a
failure, thus forcing the algorithm to look for a better
solution. A similar technique can be found in (ILOG
1998). It is obvious that the value C is the upper bound
of the solution and that by adding the new constraint
the updated upper bound becomes actively involved in
the search.

The lower bound is integrated in the model through
the use of resource constraints. In our problem the
value of the cost variable powersrsr~M is controlled by

constraint with ~racks.~o,o., .power. In-
lower bound of the ~ is updated incre-
new elements are added to rackssys~.~M.
equality constraint, the change propagates
the lower bound of the powersysT~M vari-

Before moving further, we want to mention’ briefly
that when deciding which variable to instantiate next,
port variables are always preferred, and among several
port variables, we choose first the ones belonging to a
producer.

Improved lower bound computation

Let us get back to Example 1. We can observe from the
beginning that the amount of power the racks have to
provide must be at least 180 power units, the amount
of power required by the four cards.’The current model
does not provide any way of directly relating this infor-
mation to the cost variable. We will add a redundant
constraint which, through propagation, will provide the
connection.

To be able to keep track of the power requirement
for all the cards in the system, we need a global point
of view. We associate with each type H a special type
of port variable, called metaport. A metaport variable
associated with type T, M<T>, contains all the in-
stances of T that have been created and are currently
part of the model.

Cardinality constraints on metaports allow us to put
a limitation on the total number of instances of a given
type that can be created. In addition to the usual con-
straints that can be posted on regular port variables
(resource, cardinality, etc.), metaports offer a special
type of resource constraint, called balancing constraint.

86

The constraint is described by a 4-tuple <P, C, x, y>,
where

¯ P is a metaport variable associated with type T,

¯ C is a metaport variable associated with type H,

¯ x and y are attributes representing the amount of
resource r produced by an instance of T and used,
respectively, by an instance of H.

A balancing constraint implies the existence of a
producer-consumer relation between instances of the
two types, 7" and H, on resource r, i.e. any instance t of
T has a port U<H> and t.x >__ ~t.U.y. Its semantics
is the following:

¯ The initial lower bound for ~P.x is the lower bound
of)-]~ C.y

¯ The lower bound of Y]~P.x is updated incrementally
as the result of:

- Creating a new instance u of type U: the value of
~P.x is increased by u.y

- Closing an instantiated port t. Uon attribute y: the
lower bound of ~"~P.x is increased by the difference
t.x - ~t. V.y.

We extend now the model for SYSTEM. We add
two metaports, P< RACK> and 6’< CARD>, as
well as two constraints: Balance(P, C, poweraAc~,
powercAR,) and, since all instances of RACK must be
part of the system, powersysrEM = ~-~P.powerRAcK.
The results of this change are presented in Figure 3.

200=C~i80 i80~C~;180 i80~C<180
I I

270=C~ 180 270=C~180

Figure 3: Snapshot of the search tree for an optimal
solution.

Equivalent Partial Solutions
Let us get back to Example 2. Although we did not
mention this before, the instantiation algorithm con-
siders an implicit ordering among the elements in the
domain, thus avoiding symmetries introduced by per-
mutation of values. For example, once the algorithm
discovers the solution of cost 550 which assigns the
value { lo 11 12 13C45, C45, C45, C50 } to rack R2, it will never

consider trying permutations of this set as values for
R2.

This cuts down some of the search effort, but we are
still left with partial solutions that are equivalent in the
sense that they all participate exactly with the same
amount to the final solution cost.

Eliminating equivalent partial solutions
through interchangeability
The simplest type of equivalence is introduced by multi-
ple instances of the same type. Take a look at Figure 2.
Exchanging C~ for C~ in the partial solution that in-
cludes two instances of 45 power unit cards in the value
of R2, C~° and C~51, will lead to a solution of equal cost.
This is because in our model any two card instances of
the same type are identical in all respects.

By analogy with (Freuder 1991), we say that two in-
stances are interchangeable if replacing one by the other
in any solution produces another solution of equal cost.
According to this definition, two card instances of the
same type are interchangeable.

The process we propose for eliminating equivalent
partial solutions is the following. Once an instance is
rejected from a domain during port variable instantia-
tiou, we look for all the other instances of components
of the same type and reject them as well. The effect of
doing this on problem in Example 2 is shown in Figure
4.

Although true for cards, it is not always the case that
instances of the same type are interchangeable. Here
is a simple example. We have two racks of the same
type, R~0 and R~50. Due to the different sets of cards
already connected to the two racks, R1 has 30 units of
power still available, while R2 has 50 left. Suppose the
two racks are in the domain of card C411 which must be
instantiated next. R1 is rejected because of the power
requirement, but rejecting R2 based on the fact that
the two instances have the same type would be wrong,
since R2 satisfies the power requirement.

The question is then how to decide when two in-
stances are interchangeable. Remember that they are
modeled as composite csPs. Since all instances from the
domain of a port have the same type, the correspond-
ing composite CSPs have the same sets of variables and
internal constraints. Then a sufficient condition, but
not necessary, for two instances to be interchangeable
is that pairs of corresponding variables have the same
domain in both problems. In case the domains are the
same, the two instances are clearly interchangeable.

Abstraction and context-dependent
interchangeability
But this method might prove to be too restrictive. As-
sume that type CARD can be refined to several special-
ized types, each with additional features and providing
non-identical functionality. Some cards requiring equal
amounts of power are not instances of the same type
anymore. Their models may differ, both in structure

87

(i:e. number and type of variables and constraints) and
in tile domain of the variables. According to the above
definition, these instances are not interchangeable any-
more. However, because the only relevant aspect for
deciding whether a card can be connected to a rack or
not is the amount of power it requires, solutions involv-
ing the same number of cards with equal power require-
ments are still equivalent¯

We abstract the model for CARD and RACK through
focusing on relevant common features only. Considering
only the abstracted model permits added interchange-
ability. The decision on what features are relevant is
made based on the set of constraints imposed on the
port variable.

As shown before, constraints on ports involve at-
tributes of the instances in the domain of the port,
which in our model are represented by variables¯ It
is this restricted set of variables which will be checked
for domain identity in deciding whether two instances
are interchangeable or not. In our example, the set of
variables contains only the variable powercano.

According to the new definition of interchangeability,
cards with equal power requirements are interchange-
able. Applying the algorithm presented earlier on the
problem instance in Example 2 produces the results pre-
sented in Figure 4.

RI 2~ CI C2C3C4C5C6C7C8C9(~00(11)(2~(304~40(5

R221~) CIOC|I CI2C13 ¢)(4 0(5

R3 I!iO CI4CI5

I~0 CI40(5

i!o 0,(4 CI5
2~1 CIOCII CI20(3 0(4CI5

I~0 CIOCII CI20k(3 ~(4 ~(5

2~) CI0Cll (X2 Ct3 CI4 ~(5
I

15() CIOCII 0(2 Cl3 ~4 ~(5

2~) CIOCII 0(2 0(3 (~(4

It0 CIOCII 0(2 ~3 t)(4

150 CIO(~I 0(2CI3 CI4 0(5
¯ 2~) C1004(| 0(2C13 0(4CI5

I~O CIO0(I 0(2 Cl3 (~(4

t~() CI00(I 0(2 ~(3 ~4

I~0 CI00~I (~(2 0(3 0(4

495< C<oo

525 < C <:30

C = 550 <:’:o

625 < Cf 500

~X) < Cf 5(X)

55O-< cf 5(10
525 ~ c/f 5(~)

515~ Cf 5O0
515<: cf 5oo

540< cf 500

565 <: C,~ 5(X)

5(15 a C~ 5(X)
530< C~ 5(X)

555 <: cf 50o
53O ~ C~ 5iX)
6O5 <: c~ 5ix)

Figure 4: Snapshot of the search tree for an optimal
solution.

Experimental Evaluation

In order to test the performance of our approach, we
used a set of randomly generated test problem instances
similar to the one presented in Example 2. Each in-
stance is characterized by the cardinality of the set of
cards. We generated problems having between 10 and
200 cards, with an increment of 10. For each number
of cards we generated 50 problem instances. The types
of the cards were assigned randomly among the four
types.

We conducted two sets of experiments in which we
addressed the problem of finding the optimal solution

and proving its optimality. First, we compared our al-
gorithm with a program implemented specifically for
solving this problem, presented in (ILOG 1998). The
results, in terms of CPU time, are presented in Figure 5.
The advantage of our method is obvious. For example
for problems with 30 cards, we limited the running time
for the Solver code to two hours, while our algorithm
completed on average in 0.5 seconds.

¯ or (91roll -e.ede.....
¯ let, n-code" --

Figure 5: Comparison with the original Solver code.

CPUTI~*¢ (secl
140

120

100

8o

60

4O

2O

0

"first-tim" --
"opUtlll -t Ira" ---’i

"t/t~’"/

40 60 80 100 120 140 1~ t~ 200
ICerds

Figure 6: Search effort in terms of CPU time.

For the second set of experiments we used only our
algorithm and compared the search effort spent for find-
ing the first solution with the search effort required for
finding the optimal solution and proving its optimality.
The results are presented in Figure 6. The figure consist
of two plots, one for the first solution (the plot name is
prefixed by first), the other for finding and proving the
optimality (the plot name is prefixed by optimal)¯ Each
point of the plot was computed as the average over the
50 problem instances generated for each value of the
number of cards.

As we can observe, the two plots are very close to each
other, which proves the advantages of our method: not
only we discover fast the optimal solution, but we are
also able to prove very quickly its optimality¯

88

Acknowledgment
This material is based on work supported by ILOG S.A.
and the National Science Foundation under Grant No.
IRI-9504316.

References
Cabon, B.; Givry, S. D.; and Verfaillie, G. 1998.
Anytime Lower Bounds for Constraint Violation Min-
imization Problems. In Proceedings of the ~th Interna-
tional Conference on Principles and Practice of Con-
straint Programming, number 1520 in Lecture Notes
in Computer Science. Springer.
Freuder, E. C., and Wallace, R. 1992. Partial Con-
straint Satisfaction. Artificial Intelligence (58).

Freuder, E. C. 1991. Eliminating Interchangeable Val-
ues in Constraint Satisfaction Problems. In Proceed-
ings of the Ninth National Conference on Artificial In-
telligence. AAAI Press.
Givry, S. D.; VerfaUlie, G.; and Schiex, T. 1997.
Bounding the Optimum of Constraint Optimization
Problems. In Proceedings of the Third International
Conference on Principles and Practice of Constraint
Programming, number 1330 in Lecture Notes in Com-
puter Science. Springer.
ILOG, S. A. 1998. ILOG Solver User’s Manual.
Mailharro, D. 1998. A Classification and Constraint
based framework for configuration. AIEDAM. Special
issue on Configuration.

Sabin, D., and Freuder, E. C. 1994. Contradicting
Conventional Wisdom in Constraint Satisfaction. In
Proceedings of the 11th European Conference on Arti-
ficial Intelligence. Wiley.
Sabin, D., and Freuder, E. C. 1996. Configuration as
Composite Constraint Satisfaction. In Artificial Intel-
ligence and Manufacturing Research Planning Work-
shop. AAAI Press.
Sabin, D., and Freuder, E. C. 1997. Understanding
and Improving the MAC Algorithm. In Proceedings of
the Third International Conference on Principles and
Practice of Constraint Programming, number 1330 in
Lecture Notes in Computer Science. Springer.

89

