Intelligent Testing can be Very Lazy

Tim Menzies¹, Bojan Cukic²

¹NASA/WVU Software Research Lab, 100 University Drive, Fairmont, WV USA
²Department of Computing Science and Electrical Engineering, West Virginia University, Morgantown, WV USA

Abstract

Testing is a search process and a test suite is complete when the search has examined all the corners of the program. Standard models of test suite sizes are gross over-estimates since they are unaware of the nature of that search space. For example, only a small part of the possible search space is ever exercised in practice. Further, a repeated result is that a few random searches often yields as much information as more thorough search strategies. Hence, only a few tests are needed to sample the range of behaviours of a program.

Introduction

Due to recent cutbacks, ISE Ltd. has to fire one of its test engineers. Who would you pick? Lazy Susan never tests a program rigorously. Instead, she just has a quick glance at some of the possible consequences of known inputs. Lazy Susan only ever proposes small test suites based just on small variants to the inputs. Lazy Susan never works overtime and her tests are always finished on the due date. On the other hand, Eager Earnest is more thorough and reflects on how all the different KB pathways can interact and interfere with each other. Earnest often proposes larger test suites based on the inputs, and all the interaction points downstream of the inputs. Earnest always works overtime and never finishes his testing by the due date.

Who gets sacked? Earnest thinks it should be Susan, saying that even a cursory study of the mathematics shows that testing is fundamentally a slow process. For example, a simple attribute model would declare that a system containing \(N \) variables with \(S \) assignments (on average) requires \(1^{N} \) tests. Further, a widely-used statistical model declares that over 4,500 tests are required to find moderately infrequent bugs; see Figure 1.

Not surprisingly, Susan disagrees with Earnest and thinks he should be Eager Susan, saying that even a cursory study of the mathematics shows that testing is fundamentally a slow process. For example, a simple attribute model would declare that a system containing \(N \) variables with \(S \) assignments (on average) requires \(1^{N} \) tests. Further, a widely-used statistical model declares that over 4,500 tests are required to find moderately infrequent bugs; see Figure 1.

<table>
<thead>
<tr>
<th>Text</th>
<th># of tests</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Harmon & King 1983)</td>
<td>4.5</td>
</tr>
<tr>
<td>(Buchanan et al. 1983)</td>
<td>6</td>
</tr>
<tr>
<td>(Bobrow, Mittal, & Stefik 1986)</td>
<td>5.10</td>
</tr>
<tr>
<td>(Davies 1994)</td>
<td>8.10</td>
</tr>
<tr>
<td>(Yu et al. 1979)</td>
<td>10</td>
</tr>
<tr>
<td>(Caraca-Valente et al. 2000)</td>
<td>< 13</td>
</tr>
<tr>
<td>(Menzies 1998)</td>
<td>40</td>
</tr>
<tr>
<td>(Ramsey & Basili 1989)</td>
<td>50</td>
</tr>
<tr>
<td>(Betta, D'Apuzzo, & Pietrosanto 1995)</td>
<td>200</td>
</tr>
</tbody>
</table>

Table 1: Number of tests proposed by different authors. Extended from a survey by (Caraca-Valente et al. 2000).

...that design, the expert system and the human operators took turns to run the plant. At the end of a statistically significant number of trials, the mean performance are comparable using a t-test². Further, she rejects Earnest's \(S^{N} \) model as obviously ridiculous as follows:

In sampled fielded expert systems, knowledge bases contained between 55 and 510 (Preece & Shinghal 1992). Literals offer two assignments for each proposition: true or false (i.e. \(S = 2 \) and \(N \) is half the number of literals. Assuming (i) it takes one minute to consider each test result (which is a gross under-estimate) and (ii) that the effective working year is 225 six hour days, then a test of those sampled systems would take between 29 years and 10⁷⁰ years: a time longer than the age of this universe.

²Let \(m \) and \(n \) be the number of trials of expert system and the human experts respectively. Each trial generates a performance score (time till unusual operations): \(X_1 \ldots X_m \) with mean \(\mu_x \) for the humans; and performance scores \(Y_1 \ldots Y_n \) with mean \(\mu_y \) for the expert system. We need to find a \(Z \) value as follows:

\[
Z = \frac{\bar{z}_x - \bar{z}_y}{\sqrt{\frac{s_x^2}{m} + \frac{s_y^2}{n}}} \quad \text{where} \quad S_x^2 = \frac{(x_i - \bar{x}_x)^2}{m-1} \quad \text{and} \quad S_y^2 = \frac{(y_i - \bar{y}_y)^2}{n-1},
\]

Let \(a \) be the degrees of freedom. If \(n = m = 20 \), the \(a = n + m - 2 = 38 \). We reject the hypothesis that expert system is worse than the human (i.e. \(\mu_x < \mu_y \)) with 95% confidence if \(Z \) is less than \((-f_{38,0.95} = -1.645)\).

1Exception: (Bahill, Bharathan, & Curlee 1995) propose at least one test for every five rules and add that “having more test cases than rules would be best”.

While a static analysis of a program suggests The multiple-worlds reasoners (described below) divide Partition testing (Hamlet & Taylor 1990) is the generation A test suite that satisfies the "all-uses" data-flow cover-

Model-checking for temporal properties (Clarke, Emer-

Oracle testing uses some external source of information

This notion of testing= search covers numerous testing schemes:

- Oracle testing uses some external source of information to specify distributions for the inputs and outputs
- Model-checking for temporal properties (Clarke, Emerson, & Sistla 1986) can be reduced to search as follows. First, the model is expressed as the dependency graph between literals. Secondly, the constraints are grounded and negated. The generation of counter-examples by model checkers then becomes a search for pathways from inputs to undesirable outputs.
- A test suite that satisfies the "all-uses" data-flow coverage criteria can generate proof trees for all portions of the search space that connect some literal from where it is as-

- Partition testing (Hamlet & Taylor 1990) is the generation of inputs via a reflection over the search space looking for key literals that fork the program's conclusions into N different partitions.
- The multiple-worlds reasoners (described below) divide the accessible areas of a search space into their consistent subsets.

Based on this insight of testing= search, ISE Research made the following conclusion. Table 1 proposes far fewer tests than Figure 1 since Figure 1 has limited insight into the devices being testing. Figure 1's estimates are grossly over-inflated since it is unaware of certain regularities within the software it is testing. ISE research bases this conclusion on a literature review which shows:

- While a static analysis of a program suggests S^N states, in practice only a small percentage of those are exercised by the systems inputs.
- Further, a review of inference engines shows that a few random stabs into the search space often yields as much information as more thorough search strategies.

The literature review is presented below. Note that this article is framed in terms of knowledge engineering. However, there is nothing stopping these results from being applied to software engineering (Menzies & Cukic 1999).

Studies with Data Sets

The sections discusses two studies with data sets showing that the attribute space size of the data presented to an expert system is far less than the potential upper bound of the attribute space size of the KB (S^N). This is consistent with the used portions of search spaces being non-complex. Test suites grown beyond some small size would yield no new information since the smaller test suite would have already explored the interesting parts of the KB's search space.

Avritzer et al. studied the inputs given to an expert system. Each row of a state matrix stored one unique case presented to the expert system (and each literal in the inputs were generate one column in the matrix). After examining 355 days of input data, they could only find 857 different inputs. There was massive overlap between those input sets. On average, the overlap between two randomly selected inputs was 52.9%. Further, a simple algorithm found that 26 carefully selected inputs covered 99% of the other inputs while 53 carefully selected inputs covered 99.9% of the other inputs (Avritzer, Ros, & Weyuker 1996). If most naturally occurring test suites have such an overlap, then only a small number of tests will be required.

Avritzer et al. looked at the inputs to a system. Colomb compared the inputs presented to an expert system with its internal structure. Recalling the introduction, the internals of a KB can very large: S states per N variables implies S^N combinations. Each such combination could be represented as one row in a state matrix. Colomb argues that the estimate of S^N is a gross over-inflation of effective KB size. He argues that KBs record the very small regions of experience of human experts. For example, one medical expert system studied by Colomb had $S^N = 10^{14}$. However, after one year's operation, the inputs to that expert sys-
Studies with Inference Engines

This section reviews two studies suggesting the extra effort of the thorough engineer would be wasted since the larger thorough test suite would yield little more information that the smaller lazy test suite.

Recall the behaviour of our two test engineers:

- Lazy Susan explored a couple of randomly chosen paths while Earnest considered all inputs and their downstream interactions.
- Earnest is acting like an ATMS device (DeKleer 1986). The ATMS takes the justification for every conclusions and weaves it into an assumption network. At anytime, the ATMS can report the key assumptions that drive the KB into very different conclusions. Such a search, it was thought, was a useful way to explore all the competing options within a search space.
- Lazy Susan is acting like a locally-guided best-first search across the KB. When a contradiction is detected, Susan (or the search engine) could look at the contradiction for hints on how to resolve that problem. Susan (or the search engine) could then instantiated those hints and search on. Note that, as a results, the earnest ATMS would find many options and the lazy searcher would only ever find one.

Williams and Nayak compared the results of their locally-guides search to the ATMS and found that this locally-guide contradiction resolution mechanism was comparable to the very best ATMS implementations. That is, the information gained from an exploration of all options was nearly equivalent to the information gained from the exploration of a single option (Williams & Nayak 1996).

In other work, Crawford and Baker compared TABLEAU, a depth-first search backtracking algorithm, to ISAMP, a randomised-search theorem prover (see Figure 2). ISAMP

```plaintext
Isamp(theory) {
  for i := 1 to MAX-TRIES {
    set all variables to unassigned;
    loop {
      if all variables are valued
        return(current assignment);
      v := random unvalued variable;
      assign v a randomly chosen value;
      unit_propagate();
      if contradiction exit loop;
    }
  } return failure
}
```

Figure 2: The ISAMP randomised-search theorem prover. (Crawford & Baker 1994).

The ATMS can report the key assumptions that drive the KB into very different conclusions. Such a search, it was thought, was a useful way to explore all the competing options within a search space.

Experiments with HTx

The results in the previous section support the argument that search spaces are less complex than Earnest thinks. Hence, the test suites required to sample that search space are less complex than Earnest thinks. This section addresses the sample

<table>
<thead>
<tr>
<th>TABLEAU: full search</th>
<th>ISAMP: partial, random search</th>
</tr>
</thead>
<tbody>
<tr>
<td>% Success</td>
<td>Time (sec)</td>
</tr>
<tr>
<td>A</td>
<td>90</td>
</tr>
<tr>
<td>B</td>
<td>100</td>
</tr>
<tr>
<td>C</td>
<td>70</td>
</tr>
<tr>
<td>D</td>
<td>100</td>
</tr>
<tr>
<td>E</td>
<td>80</td>
</tr>
<tr>
<td>F</td>
<td>100</td>
</tr>
</tbody>
</table>

In other work, Crawford and Baker compared TABLEAU, a depth-first search backtracking algorithm, to ISAMP, a randomised-search theorem prover (see Figure 2). ISAMP randomly assigns a value to one variable, then infers some consequences using unit propagation. Unit propagation is not a very thorough inference procedure: it only infers those conclusions which can be found using a special linear-time case of resolution; i.e.

\[(x) \land (\neg x \lor y_1 \ldots y_n) \vdash (y_1 \lor \ldots y_n)\]

After unit propagation, if a contradiction was detected, ISAMP re-assigns all the variables and tries again (giving up after MAX-TRIES number of times). Otherwise, ISAMP continues looping till all variables are assigned. Lazy Susan approves of ISAMP while Earnest likes TABLEAU since it explores more options more systematically.

Table 2 shows the relative performance of the two algorithms on a suite of scheduling problems based on real-world parameters. Surprisingly, ISAMP took less time than TABLEAU to reach more scheduling solutions using, usually, just a small number of TRIES. That is, a couple of random explorations of the easy parts of a search space yielded the best results. Crawford and Baker offer a speculation why ISAMP was so successful: their systems contained mostly "dependent" variables which are set by a small number of "control" variables (Crawford & Baker 1994). If most systems have this feature, then large test suites are not required since a few key tests are sufficient to set the control variables.

Experiments with HTx

The results in the previous section support the argument that search spaces are less complex than Earnest thinks. Hence, the test suites required to sample that search space may be very small. However, the sample size of the above studies is very small. This section addresses the sample size issue. Based on the HTx *abductive model of testing* (Menzies 1995; Menzies & Compton 1997), a suite of *mutators* can generate any number of sample testing problems\(^3\). Three HTx algorithms are HT4 (Menzies 1995),

\(^3\)Informally, abduction is inference to the best explanation. More precisely, abduction make whatever assumptions A which are required to reach output goals Out across a theory T U A ⊨ Out without causing contradiction T U A ⊨ ¬Out. Each consistent set of assumptions represents an explanation. If more than one explanation
HT4-dumb (Menzies & Waugh 1998), and HT0 (Menzies & Michael 1999). HTx algorithms were designed as automatic hypothesis testers for under-specified theories and are a generalization and optimization of QMOD, a validation tool for neuroendocrinological theories (Feldman, Compton, & Smythe 1989). HTx and QMOD assumes that the definitive test for a theory is that it can reproduce (or cover) known behaviour of the entity being modeled. Theory \(T_1 \) is a better theory than theory \(T_2 \) iff

\[
\text{cover}(T_1) \succ \text{cover}(T_2)
\]

Below, we will show experiments where HTx is run millions of times over tens of thousands of models. The results endorse the widespread existence of simple search spaces. A small number of random searches (by HT0) covered nearly as much output as extensive searches by HT4. Further, the sample size is much larger than that offered by Williams, Nayak, Crawford, and Baker.

An Informal Model of Testing

This section gives a quick overview of the intuitions of HTx. The next section details these intuitions.

At runtime, an inference engine explores the search space of a program. A given test applies some inputs \((I_n) \) to the program to reach some outputs \((O_n) \). The inference engine may be indeterminate or chosen randomly (e.g. by ISAMP) and so the pathway taken from inputs to outputs may vary. Hence, we call the intermediaries assumptions \((A) \). That is:

\[
\text{Out}, A \succ f(I_n, KB)
\]

where \(f \) is the inference engine and \(KB \) are the literals \{a..z\} which we can divide as follows:

\[
\begin{align*}
\text{In} & \quad a, b, c, \ldots, l, m, n, \ldots, x, y, z \\
\text{Out} & \quad \text{A}
\end{align*}
\]

That is, from the inputs \(a, b, c, \ldots \), we can reach the outputs \(x, y, z \) via the assumptions \(l, m, n, \ldots \). Some of \(a..z \) are positive goals that we are trying to achieve while some are negative goals reflecting situations we are trying to avoid. In the general case, only a subset of \(\text{Out} \) will be reachable using some subset of the \(\text{In} \), \(A \) since:

- The search space may not approve of connections between all of \(\text{In} \) and \(\text{Out} \).
- Some of the assumptions may be contradictory. Multiple worlds of beliefs may be generated when contradictory assumptions are sorted into their maximal consistent subsets.
- In the case of randomized search, only parts of the search space may be explored. For example, we could run ISAMP for a finite number of \(\text{TRIES} \) and return the \(\text{TRY} \) which the maximum number of assignments to \(\text{Out} \).

Our testing intuition is that a test case beams a searchlight from \(\text{In} \) across \(A \) to \(\text{Out} \). Sometimes, the light reveals something interesting. We can stop testing when our searchlight stops finding anything new. What will be shown below is that a few quick flashes show as much as lots of poking around in corners with the flashlight.

HTx: An More Formal Model of Testing

This section describes the details of HTx. The next section describes an example.

We represent a theory as a directed-cyclic graph \(T = G \) containing vertices \(\{V_i, V_j, \ldots\} \) with roots \(\text{roots}(G) \) and leaves \(\text{leaves}(G) \). A vertex is one of two types:

- **Ands** can be believed if all their parents are believed.
- **Ors** can be believed if any of their parents are believed or it has been labeled an \(\text{In} \) vertex (see below). Each or-node contradicts \(0 \) or more other or-nodes, denoted \(\text{no}(V_i) = \{V_j, V_k, \ldots\} \). The average size of the \(\text{no} \) sets is called \(\text{contraints}(G) \). For propositional systems, \(\text{contraints}(G) = 1 \); e.g. \(\text{no}(a) = \{\neg a\} \).

\(\text{In} \) and \(\text{Out} \) are sets of vertices from \(\text{ors}(G) \). A proof \(P \subseteq G \) is a tree containing the vertices \(\text{uses}(P) = \{V_i, V_j, \ldots\} \). The proof tree has:

- Exactly one leaf which is an output; i.e. \(\text{leaves}(\text{uses}(P_z)) = 1 \land V_i \in \text{uses}(P_z) \land V_i \in \text{Out} \)
- \(1 \) or more roots \(\text{roots}(P_z) \subseteq \text{In} \).

No two proof vertices can contradict each other; i.e.

\[
\text{no}(V_i) \land V_i \in \text{uses}(P_z) \land \neg V_j \in \text{no}(V_i)
\]

A proof's assumptions are the vertices that are not inputs or outputs; i.e.

\[
\text{assumes}(P_z) = \text{uses}(P_z) - \text{roots}(P_z) - \text{leaves}(P_z)
\]

A test suite is \(N \) pairs \(\{\langle \text{In}_1, \text{Out}_1 \rangle, \ldots, \langle \text{In}_n, \text{Out}_n \rangle\} \). We assumed that each \(\text{In}_i, \text{Out}_i \) contains only or-vertices. Each output \(\text{Out}_i \) can generated \(0 \) or more proofs \(\{P_z, P_y, \ldots\} \). A world is a maximal consistent subsets of the proofs (maximal w.r.t. size and consistent w.r.t. the \(\text{no} \) sets) denoted \(\text{proofs}(W_i) = \{P_z, P_y, \ldots\} \). Worlds to proofs is many-to-many. The cover of a world is how many outputs it contains; i.e.

\[
\text{cover}(W_i) = \left| \bigcup_{i} \{P_z \in \text{proofs}(W_i) \land V_y \in \text{leaves}(P_z)\} \right| \div |\text{Out}|
\]

We make no other comment on the nature of \(\text{Out}_i \). It may be some undesirable state or some desired goal. In either case, the aim of our testing is to find the worlds that cover the largest percentage of \(\text{Out} \).
A hypothetical economics theory

Figure 3: Two worlds for outputs (ellipses) from inputs (squares). Assumptions are world vertices that are not inputs or outputs. Note that contradictory assumptions are managed in separate worlds.

P_1 foreignSales=up, companyProfits=up+, corporateSpending=up+, investorConfidence=up
P_2 domesticSales=down, companyProfits=down+, corporateSpending=down+, wageRestraint=up
P_3 domesticSales=down, companyProfits=down+, inflation=down
P_4 domesticSales=down, companyProfits=down+, inflation=down, wagesRestraint=up
P_5 foreignSales=up, publicConfidence=up, inflation=down
P_6 foreignSales=up, publicConfidence=up, inflation=down, wageRestraint=up

Table 3: Proofs connecting inputs to outputs. X^+ and X^- denote the assumptions and the controversial assumptions respectively.

An Example

Figure 3 (left) shows a hypothetical economics theory written in the QCM language (Menzies & Compton 1997). All theory variables have three mutually exclusive states: up, down or steady; i.e. $\text{not}(V_{a=up}) = \{V_{a=down}, V_{a=steady}\}$ and $\text{constraints}(G) = 2$. These values model the sign of the first derivative of these variables (i.e. the rate of change in each value). In QCM, $x \leftrightarrow y$ denotes that y being up or down could be explained by x being up or down respectively. Also, $x \rightarrow y$ denotes that y being up or down could be explained by x being down or up respectively. Some links are conditional on other factors; for example if transport then education \leftrightarrow literacy. To process such a link, QCM adds a conjunction between education and literacy. The preconditions of that connection are now education and transport. QCM also adds conjunctions to offer explanations of steadies: the conjunction to competing upstream influences can explain a steady.

Consider the case where the inputs In is (foreignSales=up, domesticSales=down) and the goals Out are (investorConfidence=up, inflation=down, wageRestraint=up). There are six proofs that connect In to Out (see Table 3). These proofs comprise only or-nodes. These proofs contain assumptions (variable assignments not found in $In \cup Out$). Some of these proofs make contradictory assumptions A; e.g. corporateSpending=up in P_1 and corporateSpending=down in P_2. That is, we cannot believe in P_1 and P_2 at the same time. If we sort these proofs into the subsets which we can believe at one time, we get worlds W_1 (Figure 3, middle) and W_2 (Figure 3, right). W_1 is a maximal consistent subset of pathways that can be believed at the same time; i.e. $\{P_1, P_5, P_6\}$. W_2 is another maximal consistent subset: $\{P_2, P_3, P_4, P_6\}$. The cover of W_1 is 100% while the cover of W_2 is 67%.

Recall that HTx scores a theory by the maximum cover of the worlds it generates. Hence, our economics theory gets full marks: 100%. HT4 (and QMOD before it) found errors in a published theory of neuroendocrinological (Smythe 1989) when its maximum cover was found to be 42%. That is, after making every assumption possible to explain as many of the goals as possible, only 42% of certain published observations of human glucose regulation could be explained. Interestingly, these faults were found using the data published to support those theories. This suggests that HT4-style abductive validation is practical for assessing existing scientific publications. HTx is practical for many other real-world theories. For example, one implementation of HT4, was fast enough to process at least one published sample of real-world expert systems (Menzies 1996).

HT4, HT4-dumb, HTx

The difference between the HTx algorithms is how they searched for their worlds:

- HT4 found all proofs for all outputs, then generated all the worlds from those proofs. Next, the worlds(s) with
Figure 4: An expansion of the left-hand-side QCM theory into IEDGE and XNODE. Note that for the XNODE expansion, the \(\frac{dx}{dt} \) variable was \(A \).

largest cover was then returned.

- HT4-dumb was an a crippled version of HT4 that returned any world at all, chosen at random. It was meant to be a straw-man system but its results were so promising (see below) that it lead to the development of HT0.

- HT0 is a randomised each engine that \(\text{MAX-TRIES} \) times, finds 1 proof for each member of \(\text{Out}_i \). \(\text{Out} \) is explored in a random order and when the proof is being generated, if more than one option is found, one is picked at random. If the proof for \(\text{Out}_j \) is consistent with the proof found previously for \(\text{Out}_i \), is kept. Otherwise, HT0 moves on to \(\text{Out}_k \) \((j < k) \) and declares \(\text{Out}_j \) unsolvable. After each TRY, HT0 compares the "best" world found in previous TRIES to the world found in the try and discards the one with the lowest cover.

Susan approves of HT0 since, like her, it uses a lazy method to study a program. Earnest likes HT4 since it explores more of the program. For example, says Earnest, if Lazy Susan had stumbled randomly on W2 of Figure 3, and did not look any further to find W1, then she would have inappropriately declared that the economics model could only explain 67% of the outputs. Susan replies that, on average, the cost of such extra searching is not justified by its benefits. The following studies comparing HTX algorithms support Susan's case.

HT4 vs HT4-dumb

Menzies and Waugh compared HT4 and HT4-dumb using tens of thousands of theories (Menzies & Waugh 1998). Starting with a seed theory (fish growing in a fishery, see Figure 5), automatic mutators were built to generate a wide range of problems (see Table 4). When these problems were run with HT4 and HT4-dumb, the maximum difference in the cover was 5.6%; i.e. very similar, see Figure 6. That is, in a large number (1,512,000) of world generation experiments, (1) many different searches contain the same goals, (2) there was little observed utility in using more than one world.
HT4 vs HT0

HT4-dumb was implemented as a back-end to HT4. HT4 would propose lots of worlds and HT4-dumb would pick one at random. That is, HT4-dumb was at least as slow as HT4. However, it worked so astonishingly well, that HT0 was developed. Real world and artificially generated theories were used to test HT0. A real-world theory of neuroendocrinology with 558 clauses containing 91 variables with 3 values each (273 literals) was copied X times. Next, Y% of the variables in in one copy were connected at random to variables in other copies. In this way, theories between 30 and 20000 Prolog clauses were built using Y=40, average \(\frac{\text{sub-goals}}{\text{clause}} \approx 1.7\), \(\frac{\text{clauses}}{\text{literals}} = 1.5.5\). When executed with \(\text{MAX-TRIES}=50\) the \(O(N^2)\) curve of Figure 7 was generated. HT4 did not terminate for theories with more than 1000 clauses. Hence, we can only compare the cover of HT0 to HT4 for part of this experiment. In the comparable region, HT0 found 98% of the outputs found by HT4.

In other experiments, the maximum cover found for different values of \(\text{MAX-TRIES}\) was explored. Surprisingly, the maximum cover found for \(\text{MAX-TRIES}=50\) was found with \(\text{MAX-TRIES}\) as low as 6.

In summary, a small number of quick random searches (HT0) found nearly as much of the interesting portions of the KB as a careful, slower, larger number of searchers (HT4).

Conclusion

On average, exploring a theory is not as complex as one might think. Testing is a search process and a test suite is complete when the search has examined all the corners of the program. Often a few lazy explorations of a search space yields as much information as more thorough searches.

Philosophically, this must be true. Our impressions are that human resources are limited and most explorations of theories are cost-bounded. Hence, many theories are not explored rigourously. Yet, to a useful degree, this limited reasoning about our ideas works. This can only be true if our theories yield their key insights early to our limited tests. Otherwise, we doubt that the human intellectual process could have achieved so much.

Earnest strongly disagrees with the last paragraph, saying that such an argument represents the height of human arrogance; i.e. once again humanity is claiming to have some special authority over the random universe around us. Lazy Susan does not have the heart to disagree. She'd just been promoted while Earnest had been sacked. Her view is that this arrogance seems justified, at least based on the above evidence.

She had lunch with Earnest on his last day. As he cried into his soup, he warned that the above analysis is overly optimistic. The results of this article refer to the average case behaviour of a test rig. In safety-critical situations, such an average case analysis is inappropriate due to the disastrous implications of the non-average case. Secondly, these results only refer to the number of tests that can detect anomalous behaviour. Once an error is found, it must be localized and removed. Strategies for fault localization and repair are explored elsewhere in the literature (Shapiro 1983; Hamscher, Console, & DeKleer 1992).

Susan paid for that last lunch using her pay rise: it seemed the decent thing to do.
Acknowledgements

This work was partially supported by NASA through cooperative agreement #NCC 2-979.

References

Clarke, E.; Emerson, E.; and Sistla, A. 1986. Automatic verification of finite-state concurrent systems using temporal logic specifications. ACM Transactions on Programming Languages and Systems 8(2):244-263.

