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Abstract

The Nursebot project is a multi-disciplinary, multi-university
effort aimed at developing mobile robotic assistants for the el-
derly. In this paper, we describe one such robot, Pearl. Pearl
has two primary functions: (i) reminding people about rou-
tine activities such as eating, drinking, taking medicine, and
using the bathroom, and (ii) guiding them through their en-
vironments. We provide a brief overview of the hardware
platform, and we sketch the major software systems that en-
able Pearl to perform its two main functions. A prototype
version of Pearl has been completely built, with all software
implemented, and preliminary testing has been done at the
Longwood Retirement Community in Oakmont, PA.

Introduction
The global trend of increasing longevity presents an enor-
mous challenge to those engaged in developing technology
to sustain independence and preserve quality of life among
older adults. As more people live longer than ever before,
the resulting demographic shift raises the profile of frailty
and disability within the world’s population (Davies 1999).
In the United States, two out of every five dependents of
persons between 18 and 64 years of age is an older adult
(McDevitt & Rowe 2002), and one-third of community-
residing, older adults indicate that they are severely limited
by a disabling condition (McNeil 2001).

Though the vast majority of older adults live in the com-
munity, many reside with similarly frail relatives, or live
alone with little or no outside support (AoA 2001). Family
members are often widely dispersed and minimally involved
in meeting the day-to-day needs of their elders. In-home ser-
vices from community agencies are generally time-limited
and, if not covered through insurance, prohibitively expen-
sive for many older adults. Further, a pressing shortage of
nursing personnel exists, particularly among nurses (Sprat-
ley et al. 2002) who might help older adults manage safely
at home.

Frail and disabled older adults are at risk for hospital-
ization and premature institutionalization, due to the com-
plex interplay among age-related deficits, manifestations
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and treatment of disease, and behavioral, social and eco-
nomic factors (Maas et al. 2001). For example, cognitive
impairment, including memory lapses and loss of executive
function, may conspire with visual impairment and poverty
to interfere with taking medication as prescribed. Urinary
incontinence may result from bladder overactivity or loss of
muscle tone or sphincter control and worsen when restricted
joint movement makes getting to the bathroom difficult. De-
conditioning that results from prolonged immobility may af-
fect strength and balance, producing unsteadiness and pre-
disposition for falls. Social isolation due to geographic loca-
tion, lack of interpersonal contact, or psychopathology may
correspond to poor eating habits, weight loss, and weakness.

Technology will never alleviate the full array of problems
our burgeoning aged population faces, particularly those that
require a human hand to touch, a human ear to listen, and
human sensibilities to register empathy face-to-face. This
paper describes a project in which we are designing and
building robotic assistants that augment, rather than replace,
human interaction. Of the many services that such a robot
could provide (see (Engelberger 1999; Lacey & Dawson-
Howe 1998)), our focus is on two tasks: (i) reminding peo-
ple about routine activities such as eating, drinking, taking
medicine, and using the bathroom, and (ii) guiding them
through their environments. Our goal in this paper is to pro-
vide a picture of the overall system, and to give a sense of
our vision of how it can help in the lives of elderly people.
Due to space limitations, we cannot provide comprehensive
technical details, but see our other papers, which describe
particular aspects of the project (Baltus et al. 2000; Col-
bry, Peintner, & Pollack 2002; McCarthy & Pollack 2002;
Pollack 2002; Pollack et al. 2002; Montemerlo et al. 2002;
Pineau & Thrun 2002).

System Overview
The Nursebot Project was conceived in 1998 by a multi-
disciplinary team of investigators from three universities,
consisting of researchers in both health care and computer
science. The initial goal of the project was to develop mobile
robotic assistants for elderly people living in their homes,
particularly those with mild cognitive impairment. Over
time, the goals have expanded to also include robotic as-
sistants for elderly in other settings (particularly, assisted
living and nursing homes), assistants for nurses caring for
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Figure 1: Pearl at the Longwood Retirement Community.

the elderly in these settings, and other sorts of (non-robotic)
intelligent assistants for the elderly.

To date, we have developed two autonomous mobile
robots, along with software systems to enable these robots
to assist elderly people. Figure 1 shows Pearl, our current
robot, interacting with elderly residents of the Longwood
Retirement Community in Oakmont, PA, where we have
conducted initial field tests. Pearl is equipped with a dif-
ferential drive system, two on-board Pentium PCs, wireless
Ethernet, SICK laser range finders, sonar sensors, micro-
phones for speech recognition, speakers for speech synthe-
sis, touch-sensitive graphical displays, actuated head units,
and stereo camera systems. Particular care has been paid to
the design of Pearl’s visual appearance, especially its head
unit.1

On the software side, Pearl features off-the-shelf au-
tonomous mobile robot navigation systems, speech recog-
nition and speech synthesis software, fast image capture
and compression software for online video streaming, and
face detection and tracking software. Additionally, Pearl in-
cludes software modules, described below, that support the
primary tasks of providing reminders and assisting with nav-
igation.

Cognitive Orthotic Functions
The first main function of our system is to serve as a cogni-
tive orthotic, providing elderly people with reminders about
their daily activities. The idea of using computer technology
to enhance the performance of cognitively disabled people
dates back nearly forty years (Englebart 1963). Early aids
included talking clocks, calendar systems, and similar de-
vices that were not very technologically sophisticated; yet

1Pearl was largely designed and built by Greg Baltus.

many are still in use today. More recent efforts at designing
cognitive orthotics have enabled reminders to be provided
using the telephone (Friedman 1998), personal digital assis-
tants (Dowds & Robinson 1996) and pagers (Hersh & Tread-
gold 1994). Work has also been done on improved model-
ing of clients’ activities, notably in the work of Kirsch and
Levine (Kirsch et al. 1987), and in the PEAT system (Levin-
son 1997). This latter system is a hand-held orthotic device
that uses AI planning technology to model the client’s plan,
and provide visual and audible cues about its execution.

In the Nursebot project, our goal is to make principled de-
cisions about what reminders to issue when, balancing sev-
eral potentially competing objectives: (i) ensuring that the
client is aware of activities she (the cleint) is expected to
perform, (ii) increasing the likelihood that she will perform
at least the required activities (such as taking medicine), (iii)
avoiding annoying the client, and (iv) avoiding making the
client overly reliant on the system. To attain these goals, the
system must be flexible and adaptive, responding to the ac-
tions taken by the client. Consider, for instance, a forgetful,
elderly client with urinary incontinence who is supposed to
be reminded to use the toilet every three hours, and whose
next reminder is scheduled for 11:00 a.m. Suppose that our
robot system observes the client enter the bathroom at 10:40
a.m., and concludes that toileting has occurred. The sys-
tem should not then issue a reminder at 11:00, as previous
planned, but should instead set a later reminder. Again, in
making this decision, flexibility is required. A strict three-
hour interval may not be optimal: the client’s favorite televi-
sion program might be on from 1:30 to 2:00. In that case, it
might be better to issue the reminder at 1:25, and provide a
justfication that mentions the television program (e.g., “Mrs.
Smith, Why don’t you use the toilet now? That way I won’t
interrupt you during your show.”)

The software component we have developed to provide
the cognitive orthotic functions is called Autominder, and
is depicted in Figure 2. As shown, Autominder has three
main components: a Plan Manager (PM), which stores the
client’s plan of daily activities, and is responsible for updat-
ing it and identifying any potential conflicts in it; a Client
Modeler (CM), which uses information about the client’s
observable activities to track the execution of the plan; and
a Personal Cognitive Orthotic (PCO), which reasons about
any disparities between what the client is supposed to do
and what she is doing, and makes decisions about when to
issue reminders.

To initialize the system, the caregiver for an elderly client
inputs a description of the client’s daily activities, as well
as any constraints on, or preferences regarding, the time
or manner of their performance. This plan may then be
changed in one of four ways: (i) the client or caregiver may
add new activities; (ii) the client or caregiver may modify
or delete activities aleady in the plan2 (iii) the client may
execute one of the planned activities; or (iv) the simple pas-

2In later versions of the system, we will need to implement
mechanisms that ensure that the client is allowed to change some
activities, e.g., social engagements, but is blocked from modifying
others, e.g., medicine-taking.



Figure 2: Autominder Architecture

sage of time may cause automatic changes to be made in the
plan.3 Whenever a change occurs, the PM updates the client
plan, performing plan merging (Tsamardinos, Pollack, &
Horty 2000) and constraint propagation as needed. To ade-
quately represent client plans, it is essential to support a rich
set of temporal constraints; we achieve this goal by model-
ing client plans as Disjunctive Temporal Problems (DTPs)
and reasoning about them using efficient algorithms devel-
oped in our group (Tsamardinos 2001).

As the elderly client goes about her day, sensor informa-
tion is gathered by the robot and sent to the CM, which uses
this information to try to infer what activities the client is
performing. For instance, going to the kitchen around the
normal dinner time may indicate that the client is beginning
dinner. If the likelihood is high that a planned activity is be-
ing executed, the CM reports this to the PM, which can then
update the client’s plans by recording the time of execution
and propagating any affected constraints to other activities
(e.g., if the client is supposed to take medicine no less than
two hours after eating, the time for medicine-taking can be
made more precise upon learning that the client is having
dinner). The client model is represented with a new rea-
soning formalism called a Quantitative Temporal Bayes Net
(QTBN), which we developed to handle the need both to
reason about fluents and about probabilistic temporal con-
straints (Colbry, Peintner, & Pollack 2002).

The final component of Autominder is the PCO (Mc-
Carthy & Pollack 2002), which uses both the client plan
and the client model to determine what reminders should
be issued and when. The PCO identifies activities that may
require reminders based on their importance and their like-

3For instance, suppose that the client can eat lunch anytime be-
tween 11:00 a.m. and 1 p.m., but also expects her son to call at
noon to check in with her. If we expect that lunch will take at least
20 minutes, and that it should not be interrupted by the phone call,
then if lunch has not begun by 11:10 a.m., the plan will be changed
to specify that lunch should not begin until after the phone call.

lihood of being executed on time as modeled in the CM. It
also determines the most effective times to issue each re-
quired reminder, taking account of the expected client be-
havior, and any preferences explicitly provided by the client
and the caregiver. Finally, the PCO provides justifications as
to why particular activities warrant a reminder.

The PCO treats the generation of a reminder plan as a sat-
isficing problem. It is relatively easy to create a reminder
plan that is minimally acceptable: such a plan simply is-
sues a reminder at the earliest possible start time of each
activity. However, this plan is likely to do a poor job of
satisfying the caregiver and client, and it does not attend at
all to the objective of avoiding overreliance on the part of
the client. Producing a higher-quality reminder plan is more
difficult, as one must consider whether each reminder is re-
ally necessary, and also take account the client’s expected
behavior, her preferences, and interactions amongst planned
activities. The PCO handles this problem by adopting a
local-search approach called Planning-by-Rewriting (PbR)
(Ambite & Knoblock 2001). It begins by creating the ini-
tial reminder plan as just suggested (reminders at the earli-
est possible time), and then performs local search, using a
set of plan-rewrite rules to generate alternative candidate re-
minding plans. For example, the system contains a rule that
deletes reminders for activities that have low importance and
that are seldom forgotten by the client. Another rule spaces
out reminders for activities for the same type of action: for
instance, instead of issuing eight reminders in a row to drink
water, the PCO will attempt to spread these reminders out
through the day.

A prototype version of the Autominder has been fully im-
plemented, in Java and Lisp for Wintel machines. It has been
tested in the laboratory, as well as integrated with Pearl’s
other software components and included in a field test con-
ducted at Longwood in June of 2001. We intend to con-
duct interviews later this year with caregivers and residents
at Longwood in order to develop more detailed models of
the daily plans of several residents, and then to field test a
version of Autominder that encodes those plans.

Safe Navigation with Elderly People
The second major goal for our system is to help elderly
people navigate their environments. This goal is particu-
larly important for assisted living facilities, where nursing
staff spend significant amounts of time escorting elderly res-
idents from one location to another. The number of ac-
tivities requiring navigation is large, ranging from regular
daily events (e.g., meals), appointments (e.g., doctor ap-
pointments, physiotherapy, hair cuts), social events (e.g.,
visiting friends, cinema), to simply walking for the purpose
of exercising. Many elderly people move at extremely slow
speeds (e.g., 5 cm/sec), making the task of helping people
around one of the most labor-intensive in assisted living fa-
cilities. Furthermore, the help provided is often not of a
physical nature, as elderly people usually select walking aids
over physical assistance by nurses, thus preserving some in-
dependence. Instead, nurses often provide important cogni-
tive help, in the form of reminders, guidance and motivation,
in addition to valuable social interaction.



To enable Pearl to guide elderly people through their
environments, we have extended previous navigation sys-
tems (Burgard et al. 1998; Thrun et al. 2000), by adding
modules that are concerned specifically with interacting with
people. The problem of locating people is that of deter-
mining their � - � -location relative to the robot. Previous ap-
proaches to people tracking in robotics were feature-based:
they analyzed sensor measurements (images, range scans)
for the presence of features (Gavrila 1999; Schultz et al.
2001) as the basis of tracking. In our case, the diversity
of the environment mandated a different approach. Pearl de-
tects people using map differencing: the robot learns a map,
and people are detected by significant deviations from the
map.

Mathematically, the problem of people tracking is a com-
bined posterior estimation and model selection problem. Let�

be the number of people near the robot. The posterior
over the people’s positions is given by��� ���	� 
������������� 
�� � 
 ��� 
 ����� (1)
where ����� 
 with ���! "� �

is the location of a person at
time # , � 
 is the sequence of all sensor measurements, � 
 is
the sequence of all robot controls, and � is the environment
map. To use map differencing, the robot has to know its
own location. The location and total number of nearby peo-
ple detected by the robot is clearly dependent on the robot’s
estimate of its own location and heading direction. Hence,
Pearl estimates a posterior of the type:��� � �	� 
 �������� ��� 
 � � 
 � � 
 ��� 
 ����� (2)
where � 
 denotes the sequence of robot poses (the path) up
to time # . If

�
was known, estimating this posterior would

be a high-dimensional estimation problem, with complexity
that is between quadratic and cubic in

�
for Kalman filters

(Bar-Shalom & Fortmann 1998) or exponential in
�

for par-
ticle filters (Doucet, de Freitas, & Gordon 2001). Neither of
these approaches is, thus, applicable: Kalman filters can-
not globally localize the robot, and particle filters would be
computationally prohibitive.

Luckily, under certain reasonable conditions the posterior
(2) can be factored into

�%$ � conditionally independent
estimates:���&� 
 � � 
 ��� 
 �����(' �

��� � ��� 
 � � 
 ��� 
 ����� (3)

This factorization opens the door for a particle filter that
scales linearly in

�
. Our approach is similar (but not

identical) to the Rao-Blackwellized particle filter described
in (Doucet et al. 2000). First, the robot path � 
 is esti-
mated using a particle filter, as in the Monte Carlo localiza-
tion (MCL) algorithm (Dellaert et al. 1999) for mobile robot
localization. However, each particle in this filter is associ-
ated with a set of

�
particle filters, each representing one of

the people position estimates ��� � ��� 
 � � 
 ��� 
 ����� . These con-
ditional particle filters represent people position estimates
conditioned on robot path estimates—hence capturing the
inherent dependence of people and robot location estimates.
The data association between measurements and people is
done using maximum likelihood, as in (Bar-Shalom & Fort-
mann 1998). Under the (false) assumption that this max-
imum likelihood estimator is always correct, our approach

can be shown to converge to the correct posterior, and it does
so with update time linear in

�
. In practice, we found that

the data association is correct in the vast majority of situa-
tions.

Adaptive velocity is another area that we are working on.
Initial experiments with fixed velocity led almost always to
frustration on the people’s side, in that the robot was either
too slow or too fast. Thus, we plan to use estimates of a per-
son’s walking speed, to adapt the velocity of the robot, and
thereby maintain roughly a constant distance to the person.

Of course, safety is a critical concern when navigating in
the presense of elderly people. Our robot’s laser range sys-
tem measures obstacles 18 cm above ground, but is unable to
detect any obstacles below or above this level. In the assisted
living facilities, we found that people are easy to detect when
standing or walking, but hard when on chairs. Thus, the risk
of accidentally hitting a person’s foot due to poor localiza-
tion is particularly high in densely populated regions such as
the dining areas.

Following an idea in (Burgard et al. 1998), we restricted
the robot’s operation area to avoid densely populated re-
gions, using a manually augmented map of the environment.
To stay within its operating area, the robot needs accurate lo-
calization, especially at the boundaries of this area. While
our approach yields sufficiently accurate results on aver-
age, it is important to realize that probabilistic techniques
never provide hard guarantees that the robot obeys a safety
constraint. To further decrease the risk of a dangerous en-
counter, we augmented the robot localization particle filter
by a sampling strategy that is sensitive to the increased risk
in the dining areas (see (Poupart, Ortiz, & Boutilier 2001;
Thrun, Langford, & Verma 2002)). By generating samples
in high-risk regions, we minimize the likelihood of being
mislocalized in such regions, or worse, the likelihood of en-
tering prohibited regions undetected. Tests involving real-
world data collected during robot operation show that the
robot was well-localized in high-risk regions.

Control Architecture
High-level control of Pearl is required to arbitrate amongst
information gathering and performance-related actions, as
well as to negotiate the different goals generated by the dif-
ferent specialized modules. High-level robot control has
been a popular topic in AI, and decades of research have
led to a collection of well-studied architectures (e.g., (Arkin
1998; Brooks 1985; Gat 1996)). However, existing architec-
tures rarely take uncertainty into account during planning.
Consequently, we use a hierarchical variant of a partially
observable Markov decision process (POMDP) (Kaelbling,
Littman, & Cassandra 1998) as Pearl’s high-level control
architecture. Initial experiments have provided solid evi-
dence that the consideration of uncertainty leads to mea-
surably better control strategies at this level, due to the sig-
nificant levels of noise in robot perception, which arise in
Pearl both from the navigation sensors (e.g., the laser range-
finder) and the interaction sensors (e.g., speech recognition
and the touchscreen).

Pearl’s control decision is based on the full probabil-
ity distribution generated by the state estimator, such as in



State features Feature values
RobotLocation home, room, physio
UserLocation room, physio
UserPresent yes, no
ReminderGoal none, physio, vitamin, checklist
UserMotionGoal none, toPhysioWithRobot
UserInfoGoal none, wantTime, wantWeather
Observation features Feature values
Speech yes, no, time, weather, go, unknown
Touchscreen t yes, t no, t time, t weather, t go
Laser atRoom, atPhysio, atHome
Reminder g none, g physio, g vitamin, g checklist

Table 1: State Variables for the Nursebot Domain

Equation (2) above. In our application, this distribution in-
cludes a number of multi-valued probabilistic state and goal
variables, shown in Table 1, which encode information about
the robot’s location, the client’s location, the existence of a
reminder goal, observed input from the interaction sensors,
and so on. Altogether, 576 distinct states are represented.
In response, Pearl can select from 19 distinct actions, falling
into three broad categories: communication actions (e.g., is-
sue a reminder, check that the client is present, tell the client
the time or the weather), movement actions (e.g., guide the
client from one location to another), and miscellaneous ac-
tions (e.g., recharge the battery, do nothing). Each dis-
crete action invokes a well-defined sequence of operations
on the part of the robot; for instance, the action of telling the
client the weather maps to SpeechSynthesis=“Tomorrow’s
weather should be sunny, with a high of 80.”.)

Unfortunately, POMDPs of the size required for the
Nursebot application are an order of magnitude larger than
today’s best exact POMDP algorithms can tackle (Kael-
bling, Littman, & Cassandra 1998). However, this appli-
cation yields a highly structured POMDP, where certain ac-
tions are only applicable in certain situations. To exploit this
structure, we developed a hierarchical version of POMDPs,
which breaks down the decision making problem into a col-
lection of smaller problems that can be solved more effi-
ciently. Our approach is similar to the MAX-Q decomposi-
tion for MDPs (Dietterich 1998), but defined over POMDPs.

The basic idea of the hierarchical POMDP is to partition
the action space—not the state space, since the state is not
fully observable—into smaller chunks. Therefore the cor-
nerstone of our hierarchical algorithm is an action hierarchy.
Figure 3 illustrates an action hierarchy used on Pearl.

Formally, an action hierarchy is a tree, where each leaf
is labeled by an action from the target POMDP problem’s
action set. Each primitive action ������� must be attached
to at least one leaf (e.g. RingDoorBell, GotoPatientRoom,
etc.) In each internal node (shown as circles in figure 3)
we introduce an abstract action. Each of these provides an
abstraction of the actions in the nodes directly below it in the
hierarchy (e.g. Contact is an abstraction of RingDoorBell
and GotoPatientRoom.)

A key step towards hierarchical problem solving is to use
the action hierarchy to translate the original full POMDP

Contact

RingDoorBell
GotoPatientRoom

Move

GuidetoPhysio
CheckUserPresent
TerminateGuidance
ConfirmGuidetoPhysio

Assist

Act

Remind
RemindPhysioAppt
RemindVitamin

Rest
Recharge
GotoHome

UpdateChecklist

ConfirmDone

ConfirmGoHome

Inform

TellTime
TellWeather
ConfirmWantTime
ConfirmWantWeather
VerifyInfoRequest

Figure 3: Sample Action Hierarchy

task into a collection of smaller POMDPs. The goal is
to achieve a collection of POMDPs that individually are
smaller than the original POMDP, yet collectively define a
complete policy. Thus, given an internal node ��	� in the ac-
tion hierarchy, we define a corresponding subtask P � . The
subtask is a well-defined POMDP composed of:

 a state space � � , identical to the full original state space
��� ;


 an observation space �� , identical to the full original ob-
servation space �� ;


 an action space ��� , containing the children nodes (both
primitive and abstract) immediately below ��	� in the sub-
task.

For example, the action hierarchy in figure 3 divides the
problem into seven subtasks, where subtask ������� � ��� has
action set: � ����� � ��� = ����� ��� � �����! #"%$ �'&)(+*)* 
 , �,� ��� � �-�%. � 
0/�� � � ,
�,12* �3/�
0��45 #��6�7)8 � $ 
 , �� 4 & � 
0/�6 
�9 , and so on.

Once the action hierarchy has been defined, we can inde-
pendently optimize an independent policy for each subtask,
such that we obtain a collection of corresponding local poli-
cies, which taken as a whole, constitute a global policy for
action. During execution, the controller then simply mon-
itors the state of the system (i.e., calculates the posterior)
and looks up the appropriate control in the local policy set
(Pineau & Thrun 2002).

Conclusion
We have described Pearl, a mobile robot system being de-
signed to assist elderly people in navigating their daily activ-
ities and their environment. Early prototype versions of our
system have been field tested in a residential retirement com-
munity, and we have a number of additional experiments
planned for that setting. While the project we are describ-
ing is ambitious, it is the consensus of our team that success
will be dependent upon melding knowledge of technology
with knowledge of human behavior, aging, and disability.
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