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Abstract

In this work, we focus on cost-efficient techniques for real-
time diagnosis in distributed systems that allow an adap-
tive, on-line selection and execution of appropriate measure-
ments (tests). Particularly, one of our applications concerns
fault diagnosis in distributed computer systems and networks
by using test transactions, or probes (e.g., "traceroute" or
"ping" commands). The key efficiency issues include both
the cost of probing (e.g., the number of probes), and the com-
putational complexity of diagnosis. In our past work (see
(Rish, Brodie, & Ma 2002a)), we derived some theoretical
conditions on the number of probes required for an asymp-
totic error-free diagnosis, and developed efficient search tech-
niques for probe set selection that can greatly reduce the
probe set size while maintaining its diagnostic capability
(Brodie, Rish, & Ma 2001). Next, we considered the problem
of real-time diagnosis as a probabilistic inference in Bayesian
networks and investigated simple and efficient local approx-
imation techniques, based on variable-elimination (the mini-
bucket scheme (Dechter & Rish 2002)). Our empirical stud-
ies show that these approximations "degrade gracefully" with
noise and often yield an optimal solution when noise is low
enough, and our initial theoretical analysis explains this be-
havior for the simplest (greedy) approximation (Rish, Brodie,
& Ma 2002a; 2002b). Our future work will focus on adapting
more sophisticated approximation techniques, such as Gener-
alized Belief Propagation (Yedidia, Freeman, & Weiss 2001),
to real-time scenarios, and a real-time, incremental learning
of Dynamic Bayesian Networks based on the historic data and
the feedback on the diagnosis results.
Keywords: Real-time Bayesian network inference and
learning, active samplh~g, anytime approximate reasoning,
resource-bounded computation.

As distributed computer systems and networks continue to
grow in size and complexity, tasks such as real-time fault
localization and problem diagnosis become significantly
more challenging. As a result, more sophisticated tools
are needed that can assist in performing these management
tasks by both responding quickly and accurately to the ever-
increasing volume of system measurements, and also ac-
tively selecting minimum number of most-informative tests
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to run. In other words, a "passive" data-mining approach
must be replaced by active, real-time information-gathefing
and inference systems that can "ask fight questions at the
fight time". Moreover, the focus on the cost-efficency and
scalability of real-time problem diagnosis is particularly im-
portant for making it useful in the context of extremely large
geographically distributed (GRID) computing systems, and
in the face of new technological challenges related to auto-
nomic computing, an IBM’s vision for a new-generation IT
systems capable of self-management and self-repair.

We are currently working on creating a system for a real-
time problem diagnosis by using probing technology which
offers the opportunity to develop an approach to diagnosis
that is more active than traditional "passive" event correla-
tion (Kliger et al. 1997) and similar techniques. A probe
is a cornmand or a transaction (e.g., ping or traceroute com-
mand, an email message, or a web-page access request), sent
from a particular machine called a probing station to a server
or a network element in order to test a particular service
(e.g., IP-connectivity, database- or web-access). A probe re-
turns a set of measurements, such as response times, status
code (OK/not OK), and so on. Probing technology is often
used to measure the quality of network performance, often
motivated by the requirements of service-level agreements
(SLAs); however, using probing for real-time problem diag-
nosis appears to be an open area.

(a) (b)

Figure 1: (a) A two-layer Bayesian network structure for
a set X = (X1,X2,Xa) of network elements and a set of
probes T = (T1,T2), and (b) its extension to a Dynamic
Bayesian Network.

To use probes, probing stations must first be selected at
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one or more locations in the network. Then the probes
must be configured; it must be decided which network el-
ements to target and which station each probe should orig-
inate from. Using probes imposes a cost, both because of
the additional network load that their use entails and also
because the probe results must be collected, stored and an-
alyzed. Cost-effective diagnosis requires a small probe set,
yet the probe set must also provide wide coverage, in order
to locate problems anywhere in the network. By reasoning
about the interactions among the probe paths, we construct
an estimate of the information gain provided by each probe,
and use this estimate as a probe selection heuristic. This
yields a quadratic-time greedy-search algorithm which finds
near-optimal probe sets. We also implement a linear-time
algorithm which can be used to find small probe sets very
quickly; a reduction of almost 50% in the probe set size
is achieved. The results are reported in (Brodie, Rish, 
Ma 2001; Rish, Brodie, & Ma 2002b). Moreover, in (Rish,
Brodie, & Ma 2002a) we provide some theoretical bounds
on the diagnosis error and derive necessary conditions on
the number of probes required for an asymptotically error-
free diagnosis.

Once the probes have been selected and sent, fault diag-
nosis is performed by analyzing the probe outcomes. In real-
life scenarios this must be done in an environment of noise
and uncertainty. For example, a probe can fail even though
all the nodes it goes through are OK (e.g., due to packet
loss). Conversely, there is a chance that a probe succeeds
even if a node on its path has failed (e.g., dynamic routing
may result in the probe following a different path). Thus the
task is to determine the most likely configuration of the states
of the network elements.

We use the graphical framework of Bayesian networks
(Pearl 1988) that provides both a compact factorized repre-
sentation for multivariate probabilistic distributions as well
as a convenient tool for probabilistic inference. An example
of a simple Bayesian network (BN) for problem diagnosis 
shown in Figure la: a is bipartite (two-layer) graph where
the top-layer nodes represent marginally independent faults
or other problems (if the problems are not marginally inde-
pendent, appropriate edges must be added between them)
and the bottom-layer nodes represent probe results. In or-
der to represent temporal dependencies, such network can
be extended to a k-slice Dynamic Bayesian Network where
each time-slice contains a copy of the above BN, and inter-
slice dependencies are encoded by transition probabilities,
as shown in Figure lb (see (Rish, Grabamik, & Odintsova
2002) for details).

Since the exact inference in large Bayesian networks is
often intractable (NP-hard), we investigated the applicabil-
ity of approximation techniques. The complexity of infer-
ence is usually associated with large probabilistic depen-
dencies recorded during inference (clique size, or induced
width)(Dechter 1996). Thus, a popular approximation ap-
proach is to restrict the complexity by focusing only on lo-
cal interactions. We investigated the performance of two
local inference techniques, greedy-mpe and approx-mpe(1),
which are the simplest members of the parametric family
of variable-elimination algorithms known as mini-bucket ap-

proximations (Dechter & Rish 2002). Our empirical stud-
ies show that these approximations "degrade gracefully"
with noise and often yield an optimal solution when noise
is low enough, and our initial theoretical analysis explains
this behavior for the simplest (greedy) approximation (Rish,
Brodie, & Ma 2002a; 2002b). The mini-bucket scheme is
closely related to other local approximations, such as itera-
tive belief propagation (IBP) and generalized belief propa-
gation (GBP) algorithms (Yedidia, Freeman, & Weiss 2001).
We plan to investigate those approximation approaches in
our future work and hope to extend our analysis of the
mini-bucket scheme that can be viewed as simplified, non-
iterative version of those state-of-the-art approaches.

Finally, there are several directions for future work we are
planning to pursue:

¯ adaptiveprobing - i.e. adjusting the probe set dynamically
in response to the state of the network;

¯ extending local approximation techniques (mini-buckets,
GBP) to incremental, real-time scenarios;

¯ handling intermittent failures, dynamic routing, and other
non-stationarities in the network state and behavior; the
latter would require tuning the model, i.e. online learn-
ing, which can be also done actively by using probe se-
lection to improve learning (e.g., only update the part of
the model which is currently relevant).
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