
AND/OR Graph Search for Genetic Linkage Analysis

Radu Marinescu and Rina Dechter
School of Information and Computer Science

University of California, Irvine, CA 92697-3425
{radum,dechter}@ics.uci.edu

Abstract

AND/OR search spaces have recently been introduced as a
unifying framework for advanced algorithmic schemes for
graphical models. The main virtue of this representation
is its sensitivity to the structure of the model, which can
translate into exponential time savings for search algorithms.
AND/OR Branch-and-Bound (AOBB) is a new algorithm that
explores the AND/OR search tree for solving optimization
tasks in graphical models. In this paper we extend the al-
gorithm to explore an AND/OR search graph by equipping
it with a context-based adaptive caching scheme similar to
good and no-good recording. The efficiency of the new graph
search algorithm is demonstrated empirically on the very
challenging benchmarks that arise in genetic linkage analy-
sis.

Introduction
Graphical models such as belief networks or constraint
networks are a widely used representation framework for
reasoning with probabilistic and deterministic information.
These models use graphs to capture conditional independen-
cies between variables, allowing a concise representation of
the knowledge as well as efficient graph-based query pro-
cessing algorithms. Optimization tasks such as finding the
most likely state of a belief network or finding a solution
that violates the least number of constraints can be defined
within this framework and they are typically tackled with
either search or inference algorithms (Dechter 2003).

The AND/OR search space for graphical models (Dechter
& Mateescu 2006) is a new framework for search that is
sensitive to the independencies in the model, often result-
ing in exponentially reduced complexities. It is based on
a pseudo-tree that captures independencies in the graphical
model, resulting in a search tree exponential in the depth of
the pseudo-tree, rather than in the number of variables.

AND/OR Branch-and-Bound algorithm (AOBB) is a new
search method that explores the AND/OR search tree for
solving optimization tasks in graphical models (Marinescu
& Dechter 2005). In this paper we improve the AOBB
scheme significantly by using caching schemes. Namely, we
extend the algorithm to explore the AND/OR search graph

Copyright c© 2006, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

rather than the AND/OR search tree, using a flexible caching
mechanism that can adapt to memory limitations.

The caching scheme is based on contexts and is similar
to good and no-good recording and recent schemes appear-
ing in Recursive Conditioning (Darwiche 2001) and Valued
Backtracking (Bacchus, Dalmao, & Pittasi 2003). The effi-
ciency of the proposed search methods also depends on the
accuracy of the guiding heuristic function, which is based
on the mini-bucket approximation of Variable Elimination
(Dechter & Rish 2003). We focus our empirical evaluation
on the task of finding the Most Probable Explanation in be-
lief networks (Pearl 1988), and illustrate our results on sev-
eral benchmarks from the field of genetic linkage analysis.

The paper is organized as follows. Section 2 provides
background on belief networks, AND/OR search trees and
the AOBB algorithm. In Section 3 we introduce the AND/OR
search graph and AOBB with caching. In Section 4 we de-
scribe two context-based caching schemes. Section 5 gives
some experimental results and Section 6 concludes.

Preliminaries
Belief Networks
Belief Networks provide a formalism for reasoning about
partial beliefs under conditions of uncertainty. They are de-
fined by a directed acyclic graph over nodes representing
variables of interest.

DEFINITION 1 (belief network) A belief network is a
quadruple B = (X ,D,G,P), where X = {X1, ..., Xn} is
a set of random variables, D = {D1, ..., Dn} is the set
of the corresponding discrete-valued domains, G is a di-
rected acyclic graph over X and P = {p1, ..., pn}, where
pi = P (Xi|pa(Xi)) (pa(Xi) are the parents of Xi in G)
denote conditional probability tables (CPTs). The belief net-
work represents a joint probability distribution over X hav-
ing the product form PB(x̄) =

∏n

i=1 P (xi|xpai
), where

an assignment (X1 = x1, ..., Xn = xn) is abbreviated to
x̄ = (x1, ..., xn) and where xS denotes the restriction of a
tuple x over a subset of variables S. An evidence set e is an
instantiated subset of variables. The moral graph of a belief
network is the undirected graph obtained by connecting the
parent nodes of each variable and eliminating direction.

The primary optimization query over belief networks
is finding the Most Probable Explanation (MPE), namely,

L11p L11m

X11

L21p L21m

X21

L31p L31m

X31

S11p S11m

L12p L12m

X12

L22p L22m

X22

L32p L32m

X32

S12p S12m

Figure 1: A fragment of a belief network used in genetic
linkage analysis.

finding a complete assignment to all variables having max-
imum probability, given the evidence. A generalization of
the MPE query is Maximum a Posteriori Hypothesis (MAP),
which calls for finding the most likely assignment to a subset
of hypothesis variables, given the evidence.

DEFINITION 2 (MPE task) Given a belief network and ev-
idence e, the Most Probable Explanation (MPE) task is to
find an assignment (xo

1, ..., x
o
n) such that: P (xo

1, ..., x
o
n) =

maxX1,...,Xn

∏n

k=1 P (Xk|pa(Xk), e).

The MPE task appears in applications such as diagnosis,
abduction and explanation. For example, given data on clin-
ical findings, MPE can postulate on a patient’s probable af-
flictions. In decoding, the task is to identify the most likely
message transmitted over a noisy channel given the observed
output.

DEFINITION 3 (induced graph, induced width) Given a
graph G, its induced graph relative to an ordering d of the
variables, denoted G∗(d), is obtained by processing the
nodes in reverse order of d. For each node all its earlier
neighbors are connected, including neighbors connected by
previously added edges. Given a graph and an ordering
of its nodes, the width of a node is the number of edges
connecting it to nodes lower in the ordering. The induced
width of a graph, denoted w∗(d), is the maximum width of
nodes in the induced graph.

Genetic Linkage Analysis
In human genetic linkage analysis (Ott 1999), the haplo-
type is the sequence of alleles at different loci inherited by
an individual from one parent, and the two haplotypes (ma-
ternal and paternal) of an individual constitute this individ-
ual’s genotype. When genotypes are measured by standard
procedures, the result is a list of unordered pairs of alleles,
one pair for each locus. The maximum likelihood haplotype

problem consists of finding a joint haplotype configuration
for all members of the pedigree which maximizes the prob-
ability of data.

The pedigree data can be represented as a belief network
with three types of random variables: genetic loci variables
which represent the genotypes of the individuals in the pedi-
gree (two genetic loci variables per individual per locus,
one for the paternal allele and one for the maternal allele),
phenotype variables, and selector variables which are aux-
iliary variables used to represent the gene flow in the pedi-
gree. Figure 1 represents a fragment of a network that de-
scribes parents-child interactions in a simple 2-loci analy-
sis. The genetic loci variables of individual i at locus j
are denoted by Li,jp and Li,jm. Variables Xi,j , Si,jp and
Si,jm denote the phenotype variable, the paternal selector
variable and the maternal selector variable of individual i
at locus j, respectively. The conditional probability tables
that correspond to the selector variables are parameterized
by the recombination ratio θ (Fishelson & Geiger 2002).
The remaining tables contain only deterministic informa-
tion. It can be shown that given the pedigree data, the haplo-
typing problem is equivalent to computing the Most Prob-
able Explanation (MPE) of the corresponding belief net-
work (for more details consult (Fishelson & Geiger 2002;
Fishelson, Dovgolevsky, & Geiger 2005)).

AND/OR Search Trees
The usual way to do search is to instantiate variables in turn
(we only consider a static variable ordering). In the sim-
plest case, this process defines a search tree (called here OR
search tree), whose nodes represent states in the space of
partial assignments. The traditional search space does not
capture the structure of the underlying graphical model. In-
troducing AND states into the search space can capture the
structure decomposing the problem into independent sub-
problems by conditioning on values (Freuder & Quinn 1985;
Dechter & Mateescu 2006). The AND/OR search space is
defined using a backbone pseudo-tree.

DEFINITION 4 (pseudo-tree) Given an undirected graph
G = (V,E), a directed rooted tree T = (V,E′) defined
on all its nodes is called pseudo-tree if any arc of G which is
not included in E′ is a back-arc, namely it connects a node
to an ancestor in T .

Given a belief network B = (X ,D,P), its moral graph G
and a pseudo-tree T of G, the associated AND/OR search
tree ST has alternating levels of OR nodes and AND nodes.
The OR nodes are labeled Xi and correspond to the vari-
ables. The AND nodes are labeled 〈Xi, xi〉 and correspond
to value assignments in the domains of the variables. The
structure of the AND/OR tree is based on the underlying
pseudo-tree arrangement T of G. The root of the AND/OR
search tree is an OR node, labeled with the root of T .

The children of an OR node Xi are AND nodes labeled
with assignments 〈Xi, xi〉, consistent along the path from
the root, path(Xi, xi) = (〈X1, x1〉, ..., 〈Xi−1, xi−1〉). The
children of an AND node 〈Xi, xi〉 are OR nodes labeled
with the children of variable Xi in T . In other words, the
OR states represent alternative ways of solving the problem,

C

BD E

FA

P(C|A) P(A|F) P(F)

P(D|B,C) P(B|A,E) P(E|F)

(a)

A

D

B

EC

F

(b)

OR

AND

OR

AND

OR

OR

AND

AND

A

0

B

0

E

F F

0 1 0 1

0 1

C

D D

0 1 0 1

0 1

1

E

F F

0 1 0 1

0 1

C

D D

0 1 0 1

0 1

1

B

0

E

F F

0 1 0 1

0 1

C

D D

0 1 0 1

0 1

1

E

F F

0 1 0 1

0 1

C

D D

0 1 0 1

0 1

(c)

AOR

0AND

BOR

0AND

OR E

OR F F

AND
0 1

AND 0 1

C

D D

0 1

0 1

1

EC

D D

0 1

1

B

0

E

F F

0 1

C

1

EC

(d)

Figure 2: AND/OR search spaces

whereas the AND states represent problem decomposition
into independent subproblems, all of which need be solved.
When the pseudo-tree is a chain, the AND/OR search tree
coincides with the regular OR search tree.

A solution subtree SolST
of ST is an AND/OR subtree

such that: (i) it contains the root of ST ; (ii) if a nonterminal
AND node n ∈ ST is in SolST

then all its children are in
SolST

; (iii) if a nonterminal OR node n ∈ ST is in SolT
then exactly one of its children is in SolST

.

Example 1 Figures 2(a) and 2(b) show a belief network and
its pseudo-tree together with the back-arcs (dotted lines).
Figure 2(c) shows the AND/OR search tree based on the
pseudo-tree, for bi-valued variables. A solution subtree is
highlighted.

The AND/OR search tree can be traversed by a depth-first
search algorithm that is guaranteed to have a time complex-
ity exponential in the depth of the pseudo-tree and can use
linear space (Dechter & Mateescu 2006). The arcs from Xi

to 〈Xi, xi〉 are annotated by appropriate labels of the func-
tions in P . The nodes in ST can be associated with values,
defined over the subtrees they root.

DEFINITION 5 (label) The label l(Xi, xi) of the arc from
the OR node Xi to the AND node 〈Xi, xi〉 is defined as the
product of all the conditional probability tables whose scope
includes Xi and is fully assigned along path(Xi, xi).

DEFINITION 6 (value) The value v(n) of a node n ∈ ST

is defined recursively as follows: (i) if n = 〈Xi, xi〉 is
a terminal AND node then v(n) = l(Xi, xi); (ii) if n =
〈Xi, xi〉 is an internal AND node then v(n) = l(Xi, xi) ·∏

n′∈succ(n) v(n′); (iii) if n = Xi is an internal OR node
then v(n) = maxn′∈succ(n)v(n′), where succ(n) are the
children of n in ST .

Clearly, the value of each node can be computed recur-
sively, from leaves to root.

PROPOSITION 1 Given an AND/OR search tree ST of a
belief network B = (X ,D,P), the value v(n) of a node
n ∈ ST is the most probable explanation of the subprob-
lem rooted at n, subject to the current variable instantiation
along the path from root to n. If n is the root of ST , then
v(n) is the most probable explanation of B.

AND/OR Branch-and-Bound Tree Search

AND/OR Branch-and-Bound (AOBB) was introduced in
(Marinescu & Dechter 2005) as a depth-first Branch-and-
Bound that explores an AND/OR search tree for solving op-
timization tasks in graphical models. In the following we
review briefly the algorithm.

At any stage during search, a node n along the current
path roots a current partial solution subtree, denoted by
Ssol(n), which must be connected, must contain its root n
and will have a frontier containing all those nodes that were
generated and not yet expanded. Furthermore, there exists
a static heuristic function h(n) overestimating v(n) that can
be computed efficiently when node n is first generated.

Given the current partially explored AND/OR search tree
ST , the active path AP(t) is the path of assignments from
the root of ST to the current tip node t. The inside context
in(AP) of AP(t) contains all nodes that were fully evalu-
ated and are children of nodes on AP(t). The outside con-
text out(AP) of AP(t), contains all the frontier nodes that
are children of the nodes on AP(t). The active partial sub-
tree APT (n) rooted at a node n ∈ AP(t) is the subtree
of Ssol(n) containing the nodes on AP(t) between n and t
together with their OR children. A dynamic heuristic evalu-
ation function of a node n relative to APT (n) which over-
estimates v(n) is defined as follows (for more details see
(Marinescu & Dechter 2005)).

DEFINITION 7 (dynamic heuristic evaluation function)
Given an active partial tree APT (n), the dynamic
heuristic evaluation function of n, fh(n), is de-
fined recursively as follows: (i) if APT (n) consists
only of a single node n, and if n ∈ in(AP) then
fh(n) = v(n) else fh(n) = h(n); (ii) if n = 〈Xi, xi〉
is an AND node, having OR children m1, ...,mk then
fh(n) = min(h(n), l(Xi, xi) ·

∏k

i=1 fh(mi)); (iii) if
n = Xi is an OR node, having an AND child m, then
fh(n) = min(h(n), fh(m)).

AOBB traverses the AND/OR search tree in a depth-first
manner and calculates an upper bound on v(n) of any node
n on the active path, by using fh(n). It also maintains an
lower bound on v(n) which is the current best solution sub-
tree rooted at n. If fh(n) ≤ lb(n) then the search is termi-
nated below the tip node of the active path.

AND/OR Search Graphs
The AND/OR search tree may contain nodes that root identi-
cal subtrees (i.e. their root nodes values are identical). These
are called unifiable. When unifiable nodes are merged, the
search tree becomes a graph and its size becomes smaller. A
depth-first search algorithm can explore the AND/OR graph
using additional memory. The algorithm can be modified to
cache previously computed results and retrieve them when
the same nodes are encountered again. Some unifiable nodes
can be identified based on their contexts.

DEFINITION 8 (context) Given a belief network and the
corresponding AND/OR search tree ST relative to a pseudo-
tree T , the context of any AND node 〈Xi, xi〉 ∈ ST , denoted
by context(Xi), is defined as the set of ancestors of Xi in
T , including Xi, that are connected to descendants of Xi.

It is easy to verify that the context of Xi d-separates (Pearl
1988) the subproblem PXi

below Xi from the rest of the net-
work. Namely, it is possible to solve PXi

for any assignment
of context(Xi) and record its optimal value, thus avoiding
to solve PXi

again for the same assignment. The context-
minimal AND/OR graph is obtained by merging all the con-
text unifiable AND nodes. The size of the largest context is
bounded by the induced width w∗ of the moral graph (ex-
tended with the pseudo-tree extra arcs) over the ordering
given by the depth-first traversal of T (i.e. induced width
of the pseudo-tree). Therefore, the time and space com-
plexity of a search algorithm traversing the context-minimal
AND/OR graph is O(exp(w∗)) (Dechter & Mateescu 2006).

For illustration, consider the context-minimal graph in
Figure 2(d) of the pseudo-tree from Figure 2(b). Its size
is far smaller that that of the AND/OR tree from Figure 2(c)
(16 nodes vs. 54 nodes). The contexts of the nodes can be
read from the pseudo-tree, as follows: context(A) = {A},
context(B) = {B,A}, context(C) = {C,B}, context(D) =
{D}, context(E) = {E,A} and context(F) = {F}.

AND/OR Branch-and-Bound Graph Search
In this section we extend AOBB to traverse an AND/OR
search graph by equipping it with a caching mechanism.

Figure 3 shows the graph AOBBg algorithm. The follow-
ing notation is used: (X ,D,P) is the problem with which
the procedure is called, st is the current partial solution sub-
tree being explored, in (resp. out) is the inside (resp. out-
side) context of the active path. The algorithm assumes that
variables are selected according to a pseudo-tree.

If the set X is empty, then the result is trivially computed
(line 1). Else, AOBBg selects a variable Xi (i.e. expands the
OR node Xi) and iterates over its values (line 5) to compute
the OR value v(Xi). The algorithm attempts to retrieve the
results cached at the AND nodes (line 7). If a valid cache en-
try v is found for the current AND node 〈Xi, xi〉 then the OR
value v(Xi) is updated (line 11) and the search continues
with the next value in Xi’s domain. Otherwise, the problem
is decomposed into a set of q independent subproblems, one
for each child Xk of Xi in the pseudo-tree. Procedure UB
computes the static heuristic function h(n) for every node in
the search tree.

function: AOBBg(st,X,D,P)
if X = ∅ then return 0;1
else2

Xi ← SelectVar(X);3
v(Xi)← 0;4
foreach xi ∈ Di do5

st′ ← st ∪ (Xi, xi);6
v ← ReadCache(Xi,xi);7
if v �= NULL then8

tmp← v· label(Xi,xi);9
if ¬FindCut(Xi,xi,in,out,tmp) then10

v(Xi)← max(v(Xi), tmp);11
continue;12

end13
h(Xi, xi)← UB(X ,D,P);14
foreach k = 1..q do15

h(Xk)← UB(Xk,Dk,Pk);16
UpdateContext(out, Xk, h(Xk));17

end18
if ¬FindCut(Xi,xi,in,out,h(Xi, xi)) then19

v(Xi, xi)← 1;20
foreach k = 1..q do21

val←AOBBg(st′,Xk,Dk,Pk);22
v(Xi, xi)← v(Xi, xi) · val;23

end24
WriteCache(Xi,v(Xi, xi));25
v(Xi, xi)← v(Xi, xi)·label(Xi,xi);26
UpdateContext(in, v(Xi, xi));27
v(Xi)← max(v(Xi), v(Xi, xi));28

end29

end30
return v(Xi);31

end32

Figure 3: Graph AND/OR Branch-and-Bound.

When expanding the AND node 〈Xi, xi〉, AOBBg succes-
sively updates the dynamic heuristic function fh(m) for ev-
ery ancestor node m along the active path and terminates
the current search path if, for some m, fh(m) ≤ lb(m).
Else, the independent subproblems are sequentially solved
(line 21) and the solutions are accumulated by the AND
value v(Xi, xi) (line 23). After trying all feasible values of
variable Xi, the most probable solution to the subproblem
rooted by Xi remains in v(Xi), which is returned (line 31).

The Mini-Bucket Heuristics
In this section we describe briefly a general scheme for gen-
erating static heuristic estimates h(n), based on the Mini-
Bucket approximation. The scheme is parameterized by the
Mini-Bucket i-bound, which allows for a controllable trade-
off between heuristic strength and its overhead.

Mini-Bucket Elimination (MBE) (Dechter & Rish 2003) is
an approximation algorithm designed to avoid the high time
and space complexity of Bucket Elimination (BE) (Dechter
1999), by partitioning large buckets into smaller subsets,
called mini buckets, each containing at most i (called i-
bound) distinct variables. The mini-buckets are then pro-
cessed separately. The algorithm outputs not only a bound
on the optimal solution cost, but also the collection of aug-
mented buckets, which form the basis for the heuristics gen-

A

B

E C

D F

(a)

B(F): [P(F|A,C)]

B(D): [P(D|B,C)]

B(C): [P(C|A) || λF(A,C)], [λD(B,C)]

B(E): [P(E|A,B)]

B(B): [P(B|A) || λE(A,B), λC(B)]

B(A): [P(A) || λB(A), λC(A)]

(b)

Figure 4: Schematic execution of MBE(2).

erated. The complexity is time and space O(exp(i)).
In the past, (Kask & Dechter 2001) showed that the inter-

mediate functions generated by the Mini-Bucket algorithm
MBE(i) can be used to compute a heuristic function, that
overestimates the most probable extension of the current
partial assignment in a regular OR search tree. More re-
cently, (Marinescu & Dechter 2005) extended the idea to
AND/OR search spaces as well.

Assume that a belief network B = (X ,D,P) with
pseudo-tree T is being solved by AOBB search, where the
active path ends with some OR node Xj . Consider also the
augmented bucket structure {B(X1), ..., B(Xn)} of B, con-
structed along the ordering resulted from a depth-first traver-
sal of T . For each possible value assignment Xj = xj , the
static mini-bucket heuristic estimate h(xj) of the most prob-
able solution rooted by Xj can be computed as the prod-
uct of the original conditional probability tables in bucket
B(Xj) and the intermediate functions λk that were gener-
ated in buckets B(Xk) and reside in bucket B(Xj) or below,
where Xk is a descendant of Xj in T (more details in (Kask
& Dechter 2001; Marinescu & Dechter 2005)).

Example 2 Figure 4(b) shows the augmented bucket struc-
ture generated by MBE(i=2) for the pseudo-tree displayed in
Figure 4(a), along the ordering (A,B,E,C,D, F); square
brackets denote the choice of partitioning. Assume that
during search, the active path of the current partial so-
lution subtree is (A = a,B = b) and the tip node is
the OR node C. The static mini-bucket heuristic estimate
h(C = c) = P (c|a) · λF (a, c) · λD(b, c).

Caching Schemes
In this section we present two caching schemes that can
adapt to the current memory limitations. They are based on
contexts, which are pre-computed from the pseudo-tree and
use a parameter called cache bound (or j-bound) to control
the amount of memory used for storing unifiable nodes.

Naive Caching
The first scheme, called naive caching and denoted by
AOBB+C(j), stores nodes at the variables whose context size
is smaller than or equal to the cache bound j. It is easy to
see that when j equals the induced width of the pseudo-tree
the algorithm explores the context-minimal AND/OR graph.

A straightforward way of implementing the caching
scheme is to have a cache table for each variable Xk record-

ing the context. Specifically, lets assume that the context of
Xk is context(Xk) = {Xi, ..., Xk} and |context(Xk)| ≤
j. A cache table entry corresponds to a particular instan-
tiation {xi, ..., xk} of the variables in context(Xk) and
records the most probable solution to the subproblem PXk

.
However, some tables might never get cache hits. We call

these dead-caches. In the AND/OR search graph, dead-
caches appear at nodes that have only one incoming arc.
AOBB+C(j) needs to record only nodes that are likely to
have additional incoming arcs, and these nodes can be de-
termined by inspecting the pseudo-tree. Namely, if the con-
text of a node includes that of its parent, then there is no
need to store anything for that node, because it would be a
dead-cache. For example, node B in the AND/OR search
graph from Figure 2(c) is a dead-cache because its context
includes the context of its parent A in the pseudo-tree.

Adaptive Caching
The second scheme, called adaptive caching and denoted by
AOBB+AC(j), is inspired by the AND/OR cutset condition-
ing scheme and was first explored in (Mateescu & Dechter
2005). It extends the naive scheme by allowing caching even
at nodes with contexts larger than the given cache bound,
based on adjusted contexts.

We will illustrate the idea with an example. Con-
sider the node Xk with context(Xk) = {Xi, ..., Xk},
where |context(Xk)| > j. During search, when variables
{Xi, ..., Xk−j} are assigned, they can be viewed as part of a
w-cutset (Pearl 1988). The w-cutset method consists of enu-
merating all the possible instantiations of a subset of vari-
ables (i.e. cutset), and for each one solving the remaining
easier subproblem within w-bounded space restrictions.

Therefore, once variables {Xi, ..., Xk−j} are instantiated,
the problem rooted at Xk−j+1 can be solved as a simpli-
fied subproblem from the cutset method. In the subproblem,
conditioned on the values {xi, ..., xk−j}, context(Xk) is
{Xk−j+1, ..., Xk} (we call this the adjusted context of Xk),
so it can be stored within the j-bounded space restrictions.
However, when AOBB+AC(j) retracts to Xk−j or above, all
the nodes cached at variable Xk need to be discarded.

This caching scheme requires only a linear increase in
additional memory, compared to AOBB+C(j), but it has
the potential of exponential time savings. Specifically,
for solving the subproblem rooted by Xk, AOBB+AC(j)
requires O(exp(m)) time and O(exp(j)) space, whereas
AOBB+C(j) needs O(exp(hk)) time and linear space, where
hk is the depth of the subtree rooted at Xk in the pseudo-
tree, m = |context(Xk)| and m ≤ hk.

Additional dead-caches in the adaptive scheme can also
be identified by inspecting the pseudo-tree. Consider the
node Xk from the previous example and let anc(Xk) be the
ancestors of Xk in the pseudo-tree between Xk and Xk−j ,
including Xk. If anc(Xk) contains only the variables in the
adjusted context of Xk then Xk is a dead-cache.

Preliminary Experiments
In this section we evaluate empirically the performance of
the AND/OR Branch-and-Bound graph search algorithm on

ped (w*, h) VEC SUPERLINK (i, j) AOMB(i) AOMB+C(i,j) AOMB+AC(i,j)
time nodes time nodes time nodes

1 (15, 61) 24.62 131.3 (10, 10) 0.609 23,787 0.249 4,723 0.218 4,191
20 (24, 69) 1,304 12.44 (16, 16) 480.2 19,118,600 182.0 5,072,650 192.0 5,072,400
23 (23, 38) 1,144 6,809 (16, 18) 16.60 382,351 11.33 161,896 11.29 159,377
30 (26, 51) 26,719 28,740 (20, 22) 61.57 925,958 38.85 164,701 38.81 162,061
38 (17, 59) 15,860 62.18 (12, 12) 1,212 35,360,600 104.4 1,206,780 124.7 1,156,140
50 (18, 58) 85,637 716.6 (10, 12) 83.52 2,312,423 29.72 445,083 36.41 444,058

Table 1: Time in seconds and nodes visited to prove optimality for genetic linkage analysis.

Figure 5: Detailed time results in seconds comparing the naive vs. adaptive caching for genetic linkage analysis.

the task of finding the most likely haplotype configuration
of a general pedigree. All our experiments were done on a
2.4GHz Pentium IV with 2GB of RAM.

We consider two classes of AND/OR Branch-and-Bound
graph search algorithms guided by the pre-compiled mini-
bucket heuristics and using either the naive or adaptive
caching schemes. They are denoted by AOMB+C(i,j) and
AOMB+AC(i,j), respectively. The parameters i and j de-
note the mini-bucket i-bound (which controls the accuracy
of the heuristic) and the cache bound. The pseudo-trees were
generated using the min-fill heuristic, as described in (Mari-
nescu & Dechter 2005).

We report the average effort as CPU time (in seconds)
and number of nodes visited, required for proving optimal-
ity of the solution, the induced width (w*) and depth of the
pseudo-tree (h) obtained for the test instances. The best per-
formance points are highlighted. For comparison, we also
report results obtained with the tree version of the algorithms
denoted by AOMB(i). The latter was shown to outperform
significantly the OR Branch-and-Bound version (BBMB) in
various domains (Marinescu & Dechter 2005).

Table 1 displays a summary of the results obtained for

6 hard linkage analysis networks1. For comparison, we in-
clude results obtained with VEC and SUPERLINK. SUPER-
LINK is currently the most efficient solver for genetic link-
age analysis, is dedicated to this domain, uses a combination
of variable elimination and conditioning, and takes advan-
tage of the determinism in the network. VEC is our imple-
mentation of the elimination/conditioning hybrid and is not
sensitive to determinism.

We observe that AOMB+C(i,j) and AOMB+AC(i,j) are the
best performing algorithms in this domain. The time savings
caused by both naive and adaptive caching schemes are sig-
nificant and in some cases the differences add up to several
orders of magnitude over both VEC and SUPERLINK (e.g.
ped-23, ped-50). Figure 6 provides an alternative view
comparing the two caching schemes, in terms of CPU time,
for a smaller i-bound of the mini-bucket heuristic. We notice
that adaptive caching improves significantly over the naive
scheme especially for relatively small j-bounds. This may
be important because small j-bounds mean restricted space.
At large j-bounds the two schemes are identical.

In summary, the effect of caching (either naive or adap-
tive) is more prominent for relatively weak guiding heuris-

1http://bioinfo.cs.technion.ac.il/superlink/

Figure 6: Detailed number of nodes visited comparing the naive vs. adaptive caching for genetic linkage analysis.

tics estimates. The merit of adaptive caching over naive one
is evident when the j-bound is much smaller than the in-
duced width and there is a relatively small number of dead-
caches. This translates sometimes into impressive time sav-
ings for the Branch-and-Bound algorithms.

Conclusion
In this paper we extended the AND/OR Branch-and-Bound
algorithm to traversing an AND/OR search graph rather than
an AND/OR search tree by equipping it with an efficient
caching mechanism. We investigated two flexible context-
based caching schemes that can adapt to the current memory
restrictions. The efficiency of the new AND/OR Branch-
and-Bound graph search algorithms is demonstrated empir-
ically on several challenging benchmarks from the field of
genetic linkage analysis.
Related Work: AOBB graph search is related to the Branch-
and-Bound method proposed by (Kanal & Kumar 1988)
for acyclic AND/OR graphs and game trees, as well as
the pseudo-tree search algorithm proposed in (Larrosa,
Meseguer, & Sanchez 2002). BTD developed in (Jegou &
Terrioux 2004) can also be interpreted as an AND/OR graph
search algorithm with a caching mechanism based on the
separators of the guiding tree-decomposition.

References
Bacchus, F.; Dalmao, S.; and Pittasi, T. 2003. Value elim-
ination: Bayesian inference via backtracking search. In
Uncertainty in Artificial Intelligence (UAI’03) 20–28.
Darwiche, A. 2001. Recursive conditioning. Artificial
Intelligence 126(1-2):5–41.
Dechter, R., and Mateescu, R. 2006. And/or search spaces
for graphical models. UCI-ICS Technical Report.

Dechter, R., and Rish, I. 2003. Mini-buckets: A general
scheme for approximating inference. Journal of ACM.
Dechter, R. 1999. Bucket elimination: A unifying frame-
work for reasoning. Artificial Intelligence.
Dechter, R. 2003. Constraint Processing. MIT Press.
Fishelson, M., and Geiger, D. 2002. Exact genetic linkage
computations for general pedigrees. Bioinformatics.
Fishelson, M.; Dovgolevsky, N.; and Geiger, D. 2005.
Maximum likelihood haplotyping for general pedigrees.
Human Heredity.
Freuder, E., and Quinn, M. 1985. Taking advantage of
stable sets of variables in csps. In IJCAI’85 1076–1078.
Jegou, P., and Terrioux, C. 2004. Decomposition and good
recording for solving max-csps. In ECAI’04 196–200.
Kanal, L., and Kumar, V. 1988. Search in artificial intelli-
gence. Springer-Verlag.
Kask, K., and Dechter, R. 2001. A general scheme for au-
tomatic generation of search heuristics from specification
dependencies. Artificial Intelligence 129:91–131.
Larrosa, J.; Meseguer, P.; and Sanchez, M. 2002. Pseudo-
tree search with soft constraints. In ECAI’02 131–135.
Marinescu, R., and Dechter, R. 2005. And/or branch-and-
bound for graphical models. In IJCAI’05 224–229.
Mateescu, R., and Dechter, R. 2005. And/or cutset condi-
tioning. In IJCAI’05 230–235.
Ott, J. 1999. Analysis of Human Genetic Linkage. The
Johns Hopkins University Press.
Pearl, J. 1988. Probabilistic Reasoning in Intelligent Sys-
tems. Morgan-Kaufmann.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 2
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

