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Abstract

We present a goal recognizer that statistically recog-
nizes hierarchical goal schemas and their corresponding
parameter values. The recognizer is fast (quadratic in
the number of possible goal schemas and observations
so far), and also supports partial parameter and subgoal-
level prediction as well as n-best prediction.

Introduction
Much work has been done over the years in plan recogni-
tion which is the task of inferring an agent’s goal and plan
based on observed actions. Goal recognition is a special
case of plan recognition in which only the goal is recog-
nized. Goal and plan recognition have been used in a variety
of applications including intelligent user interfaces (Lesh,
Rich, & Sidner 1999), traffic monitoring (Pynadath & Well-
man 1995), and dialogue systems (Carberry 1990).

For most applications, there are several properties re-
quired in order for goal recognition to be useful:

1. Speed: Most applications use goal recognition “online”,
meaning they use recognition results before the observed
agent has completed its activity. Ideally, goal recognition
should take a fraction of the time it takes for the observed
agent to execute its next action.

2. Early/partial prediction: In a similar vein, applications
need accurate goal prediction as early as possible in the
observed agent’s task execution. Even if a recognizer is
fast computationally, if it is unable to predict the goal until
after it has seen the last action in the agent’s task, it will
not be suitable for applications which need recognition
results during task execution. If full recognition is not
immediately available, applications can often make use
of partial predictions.

In our work, we model goals and subgoals as parameter-
ized action schemas from the SHOP2 HTN planner (Nau et
al. 2003). Thus, we can distinguish between recognition
of a goal schema and its corresponding parameter values.
We term instantiated goal recognition as the recognition of
a goal schema together with its parameter values. Addition-
ally, we consider the task of hierarchical goal recognition
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Figure 1: A Sample Hierarchical Plan Execution Tree

which is the recognition of the chain of the agent’s currently
active top-level goal and subgoals. As an illustration, con-
sider the tree shown in Figure 1 which represents an execu-
tion trace of subgoals based on a hierarchical plan.

Here the root of the tree G is the agent’s top-level goal.
Leaves of the tree A1–A5 represent the atomic actions exe-
cuted by the agent. Nodes in the middle of the tree represent
the agent’s various subgoals within the plan. For each exe-
cuted atomic action, we can define a goal chain which is the
subgoals which were active at the time it was executed. This
is the path which leads from the atomic action to the top-
level goal G. The goal chains associated with each atomic
action in the tree in Figure 1 are shown in Figure 2. We cast
hierarchical goal recognition as the recognition of the goal
chain corresponding to the agent’s last observed action.

Recognizing such goal chains can provide valuable infor-
mation not available from a top-level goal recognizer. First,
though not full plan recognition, hierarchical goal recogni-
tion provides information about which goal an agent is pur-
suing as well as a partial description of how.

Additionally, the prediction of subgoals can be seen as
a type of partial prediction. As mentioned above, when a
full prediction is not available, a recognizing agent can often
make use of partial predictions. A hierarchical recognizer
may be able to predict an agent’s subgoals even when it is
still not clear what the top-level goal is. This can allow a
recognizer to potentially make predictions much earlier in
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Figure 2: Goal Chains Corresponding to the Execution Tree
in Figure 1

an execution stream.
In this paper, we extend our recent work on hierarchical

goal schema recognition (Blaylock & Allen 2006) to include
parameter recognition and create a hierarchical instantiated
goal recognizer that is computationally fast and supports
partial prediction of subgoal levels as well as parameter val-
ues. We also report the results of our experiments with this
recognizer on a corpus of plan recognition problems.

For the rest of the paper, we first briefly describe our hi-
erarchical goal schema recognizer and then describe the ad-
dition of parameter recognition to produce an instantiated
recognizer. We then report our experimental results, discuss
related work, and then conclude.

Hierarchical Schema Recognition
This section briefly describes our recent work in creating a
hierarchical goal schema recognizer (reported in (Blaylock
& Allen 2006)), which we use here as a base in constructing
an instantiated goal recognizer. The schema recognizer uses
a novel type of graphical model which we term a Cascading
Hidden Markov Model (CHMM), which is a stack of HMMs
where the state node of one level is the output of the level
above it. An example of a CHMM is shown in Figure 3.

Here, the dth HMM (i.e., the HMM which starts with the
hidden state Xd:1) is a typical HMM with the output se-
quence O1,n. As we go up the CHMM, the hidden level
becomes the output level for the level above it, and so forth.

CHMMs are different than Hierarchical HMMs (HH-
MMs). In CHMMs, all levels transition in lock-step at every
observation (each state outputs exactly one value), whereas
states at higher levels in HHMMs can output any number
of values before they transition. Effectively, the difference
results in HHMMs modeling a tree-like structure (like that
in Figure 1) and CHMMs modeling a list of chains (as in
Figure 2). Note that converting a goal tree into a list of goal
chains results in a loss of information. For example, in the
chains in Figure 2, it is unclear if the three nodes labeled
S1:1 come from a single node within source tree, or possibly
several. This presents a problem for parameter recognition
which we deal with below.

X0:1 X0:2 X0:3 · · · X0:n

X1:1 X1:2 X1:3 · · · X1:n

...
...

...
...

Xd:1 Xd:2 Xd:3 · · · Xd:n

O1 O2 O3 · · · On

Figure 3: A Cascading Hidden Markov Model (CHMM)

However, this simplification allows us to do efficient rea-
soning with CHMMs. Our hierarchical schema recognizer
works by modeling hierarchical plans as a list of goal chains,
resulting in such duplication of subgoals which span multi-
ple timesteps. We convert a corpus of plans into such lists of
goal chains and use them to train the HMMs at each level of
the CHMM. Online prediction is then made by computing
the forward probability at each subgoal level and using that
distribution to make an n-best prediction of each subgoal
(separate ’no-predicts’ are also possible if the probability of
the n-best set is below a user-set threshold τ ). The forward
probability in CHMMs can be computed in time quadratic in
the number of possible states (i.e., possible goal schemas).

Adding Parameter Recognition
In previous work, we introduced a recognizer for parameter
values of an agent’s top-level goal (Blaylock & Allen 2004)
and integrated it into an instantiated goal recognizer for an
agent’s top-level goal (Blaylock & Allen 2005b). In this pa-
per, we show how to create a hierarchical instantiated goal
recognizer by adding parameter recognition based on that
work with the work discussed in the previous section on hi-
erarchical goal schema recognition.

We first briefly describe the top-level parameter recogni-
tion algorithm and then describe how it can be augmented to
support parameter recognition within a hierarchical instanti-
ated goal recognizer.

Top-Level Parameter Recognition
Our “flat” parameter recognizer (Blaylock & Allen 2004)
worked for the recognition of a single top-level goal, and
used a tractable form of Dempster-Shafer theory (DST) to
combine evidence (using Dempster’s rule of combination)
from observed actions. A corpus was used to learn P ((Gj =
Ak

i )|GS , AS
i ) or the probability that the value of the kth pa-

rameter of observed action Ai is equal to the jth parameter
of the goal G, given both the goal and action schemas as
well as the two parameter positions. Note that in this dis-



tribution, the value of the parameter is not considered, only
its position. This approach has the advantage that it can pre-
dict parameter values which were never seen in the training
data (because it only focuses on relations), but the disad-
vantage that it can only predict parameter values which have
appeared as parameter values of actions in the current ob-
servation stream. This issue is discussed in more detail in
(Blaylock 2005).

When the parameter recognizer observes a new action, at
the most atomic level, a DST basic probability assignment
(bpa) called a local bpa is created for the pair of each goal
parameter position j and action parameter position k, which
reflects the probability discussed above. The local bpas of a
single observed action (for a single goal parameter) can be
combined by Dempster’s rule of combination into an action
bpa which represents the evidence from the single observed
action. Upon each new action observation, the action bpa is
then combined with a running prediction bpa which keeps
track of the combined evidence for a single goal parameter
position.

Parameter values are predicted by choosing the focal el-
ement of the prediction bpa with the highest weight. It is
then comparing to the product of the ignorance measure of
the bpa (m(Ω)) and a user-set ignorance weight value (ψ),
and predicted if it is higher than that threshold.

Application of this parameter recognition algorithm to the
hierarchical case is not straightforward. For the rest of this
section, we first describe our basic approach to hierarchi-
cal instantiated goal recognition and then discussed several
problems (and their solutions) to incorporating the parame-
ter recognizer.

Basic Algorithm
The basic algorithm of the hierarchical instantiated goal rec-
ognizer is as follows: Upon observing a new action, we first
run the hierarchical schema recognizer and use it to make
preliminary predictions at each subgoal level. At each sub-
goal level, we associate a set of parameter recognizers, one
for each possible goal schema, which are then updated in
parallel. This is necessary because each parameter recog-
nizer is predicated on a particular goal schema. Each pa-
rameter recognizer is then updated by the process described
below to give a new prediction bpa for each goal parame-
ter position. If the schema recognizer makes a prediction
at that level (i.e., its prediction was above the threshold τ ),
we then use the parameter recognizers for the predicted goal
schemas to predict parameter values in the same way de-
scribed above. This is similar to the algorithm used by
our instantiated top-level goal recognizer (Blaylock & Allen
2005b), and combines the partial prediction capabilities of
the schema and parameter recognizers to yield an instanti-
ated goal recognizer.

Dealing with Uncertain Output
One problem when moving the parameter recognizer from
a “flat” to a hierarchical setting is that, at higher subgoal
levels, the hidden state (subgoal predictions) of the level be-
low becomes our output action. This has two consequences:
first, instead of the output being a single goal schema, it is

now a probability distribution over possible goal schemas
(computed by the schema recognizer at the lower level).
Also, instead of having a single parameter value for each
subgoal parameter position, we now have the prediction bpa
from the parameter recognizer at the level below.

We solve both of these problems by weighting evidence
by its associated probability. In general, a bpa in DST can
be weighted using Wu’s weighting formula (Wu 2003):

m′(A) =

{
wm(A) + 1 − w : A = Ω

wm(A) : otherwise (1)

where m is the bpa to be weighted and w is the weight. This
equation essentially weights each of the focal points of the
bpa and redistributes lost probability to Ω, or the ignorance
measure of the bpa.

To handle uncertain parameter values in the output level,
we change the computation of local bpas. Here we have an
advantage because the uncertainty of parameter values at the
lower level is actually itself represented as a bpa (the predic-
tion bpa of the parameter recognizer at the lower level). We
compute the local bpa by weighting that prediction bpa with
the probability of positional equality computed from the cor-
pus (P ((Gj = Ak

i )|GS , AS
i )).

Using these local bpas, we can then calculate the action
bpa (or evidence from a single action or subgoal) in the
same way as the original parameter recognizer. However,
we still have the lingering problem of having uncertain sub-
goal schemas at that level. Modifying the update algorithm
for this case follows the same principle we used in handling
uncertain parameters. To handle uncertain goal schemas, we
compute an action bpa for each possible goal schema. We
then introduce a new intermediate result called an observa-
tion bpa which represents the evidence for a parameter posi-
tion given an entire observation (i.e., a set of uncertain goal
schemas each associated with uncertain parameter values).
To compute the observation bpa, first each action bpa in the
observation is weighted according to the probability of its
goal schema (using Equation 1). The observation bpa is then
computed as the combination of all of the action bpas. This
effectively weights the contributed evidence of each uncer-
tain goal schema according to its probability (as computed
by the schema recognizer).

Uncertain Transitions at the Prediction Level
In the original parameter recognizer, we assumed that the
agent only had a single goal that needed to be recognized,
thus we could assume that the evidence we saw was always
for the same set of parameter values. However, in hierarchi-
cal recognition this is not the case, as subgoals may change
at arbitrary times throughout the observations (see Figure 2).

This is a problem because we need to separate evidence.
In the example of Figure 2, for example, subgoals S2:1 and
S2:2 give us evidence for the parameter values of S1:1, but
presumably not (directly) S1:2. Ideally, if we knew the start
and end times of each subgoal, we could simply reset the
prediction bpas in our parameter recognizers at that level af-
ter the third observation when the subgoal switched at that
level.



In hierarchical recognition, we do not know a priori when
goal schemas begin or end. We can, however, provide a
rough estimation by using the transition probabilities esti-
mated for each HMM in the schema recognizer. We use this
probability (i.e., the probability that a new schema does not
begin at this timestep) to weight the prediction bpa at each
new timestep.

Basically, this provides a type of decay function for ev-
idence gathered from previous timesteps. Assuming we
could perfectly predict schema start times, if a new schema
started, we would have a 0 probability, and thus weighting
would result in a reset prediction bpa. On the other hand, if
a new subgoal did not start, then we would have a weight of
1 and thus use the evidence as it stands.

Uncertain Transitions at the Output Level

A more subtle problem arises from the fact that subgoals at
the output level may correspond to more than one timestep.
As an example, consider again the goal chain sequence
shown in Figure 2. At level 2, the subgoal S2:2 is output
for two timesteps by S1:1.

This becomes a problem because Dempster’s rule of com-
bination makes the assumption that combined evidence bpas
represent independent observations. For the case in Fig-
ure 2, when predicting parameters for S1:1, we would com-
bine output evidence from S2:2 two separate times (as two
separate observation bpas), as if two separate events had oc-
curred.

The predictions for S2:2 will of course likely be differ-
ent at each of the timesteps, reflecting the progression of the
recognizer at that level. However, instead of being two in-
dependent events, they actually reflect two estimates of the
same event, with the last estimate presumably being the most
accurate (because it itself has considered more evidence at
the output level).

To reflect this, we change the update algorithm to addi-
tionally keep track of the prediction bpa formed with evi-
dence from the last timestep of the most recently ended sub-
goal at the level below, which we will call the last subgoal
prediction (lsp) bpa. At a new timestep, the prediction bpa is
formed by combining the observation bpa with this lsp bpa.
If we knew the start and end times of subgoals, we could
simply discard this prediction bpa if a subgoal had not yet
ended, or make it the new lsp if it had. Not knowing schema
start and end times gives us a similar problem at the output
level. As we discussed, we need a way of distinguishing
which observed output represents a new event versus which
represents an updated view of the same event.

We handle this case in a similar way to that above. We cal-
culate the probability that the new observation starts a new
timestep by the weighted sum of all same transition prob-
abilities at the level below. This estimate is then used to
weight the prediction bpa from the last timestep and then
combine it with the lsp bpa to form a new lsp bpa. In cases
that there is high probability that a new subgoal was begun,
the prediction bpa will have a large contribution to the lsp
bpa, whereas it will not if the probability is low.

Total Sessions 5000
Goal Schemas 10
Action Schemas 30
Ave Actions/Session 9.5
Subgoal Schemas 28
Ave Subgoal Depth 3.8
Max Subgoal Depth 9

Table 1: The Monroe Corpus

Complexity
Space precludes a detailed discussion of algorithm complex-
ity here. Instead, we provide a sketch of the analysis and
refer the reader to (Blaylock 2005) for details.

First, we must analyze the complexity of the modified pa-
rameter recognizer (which deals with output with uncertain
goal schemas). In this analysis, |S| is the number of possi-
ble goal schemas; q is the maximum parameters for a goal
schema; i is the current timestep; and D is the depth of the
hierarchical plan.

The modified algorithm computes the observation bpa by
combining (worst case) |S| action bpas — each with a max-
imum size of iq (limited by the number of unique parame-
ter values seen, as described in (Blaylock & Allen 2004)).
Thus, the total complexity for the update of a single param-
eter position is O(|S|i2q3) and for the parameter recognizer
of a single goal schema (with q parameter positions), this
becomes O(|S|i2q4). As q is constant and likely small, we
drop it, which gives us O(|S|i2).

The complexity of an update for the instantiated recog-
nizer can be calculated from the runtime of the schema rec-
ognizer plus the runtime of each of the D|S| parameter rec-
ognizers (one per each goal schema per level). Thus the total
runtime complexity is O(D|S|2 +D|S|2i2) = O(D|S|2i2),
or quadratic in the number of possible goal schemas and the
number of actions observed so far.

Experiments
We now report on our experiments, first on the parame-
ter recognizer itself, and then on the hierarchical instanti-
ated goal recognizer. For the experiments, we used 4500
plan sessions from the artificial Monroe corpus (Blaylock
& Allen 2005a) for training and the remaining 500 for test-
ing. This is the same data used in the experiments on our
instantiated top-goal recognizer (Blaylock & Allen 2005b)
and allows us to make comparisons below.

Before we describe the experiments and their results,
however, we briefly describe the metrics we use to report
results, which are also the same used in (Blaylock & Allen
2005b).

Metrics
We report results for individual subgoal depths, as well as
totals.1 For each depth, we use the same metrics used in

1Predictions on “filler” subgoals inserted to make the plan trees
of constant depth were not counted here. See (Blaylock 2005) for



(Blaylock & Allen 2005b) to measure results. These were
introduced to try to measure the general requirements of goal
recognizers described above. Precision and recall report
the number of correct predictions divided by total predic-
tions and total prediction opportunities, respectively. Con-
vergence and convergence point stem from the fact that, of-
tentimes, the recognizer will be unsure very early on in a
session, but may at some point ’converge’ on the correct an-
swer, predicting it from that point on until the end of the plan
session. Convergence measures the percentage of plan ses-
sions where the correct answer was converged upon.2 For
those plan sessions which converge, convergence point re-
ports the average action observation after which it converged
divided by the average number of actions for the converged
sessions. This is an attempt to measure how early in the plan
session the recognizer was able to zero in on the correct an-
swer.

In reporting results for parameter recognition, we addi-
tionally use recall/feasible and convergence/feasible, which
measure recall and convergence for those cases which it was
possible for the parameter recognizer to get the right answer.
As described above, our algorithm for parameter recognition
can never predict a parameter which is has not yet seen as the
parameter of an observed action.

In reporting results for instantiated recognition, parame-
ter Percentage (p%) reports, for all correct predictions, the
percentage of the goal parameters that were predicted. Con-
vergence Parameter Percentage (c/p%) reports the same for
all sessions which converged. These are an attempt to mea-
sure the specificity of correct predictions which are made.
For hierarchical recognition, we make a change to how con-
vergence and convergence point are calculated. Some sub-
goals only span one timestep (e.g., they only result in one
executed atomic action), in which case, it does not make
sense to report convergence or a convergence point. For all
levels, we only report convergence and convergence point
for subgoals which correspond to at least two timesteps.

Parameter Recognition Results

To test the parameter recognizer in its own right, we as-
sumed perfect schema recognition — i.e., for each new
observation, we gave the parameter recognizer information
about the chain of goal schemas at that time point, includ-
ing information about which schemas began at that timestep.
This perfect information about schema transitions meant that
the parameter recognizer did not need to deal with (a) un-
certain transitions at the prediction level and (b) uncertain
schemas at the output level. Note that there was still uncer-
tainty at the output level at higher levels because parame-
ter values were still potentially uncertain, even though the
schema was known.

Top-level Results To help interpret the results, we com-
pare performance at the top level to that of the flat recog-
nizer (which only made predictions at the top level). For

details.
2This essentially measures how many last predictions were cor-

rect, i.e., whether we ended predicting the right answer.

convenience, the results of the flat parameter recognizer on
the same data set are shown in Table 3.

The hierarchical parameter recognizer performed slightly
better in both the 1-best and 2-best cases. In 1-best, preci-
sion moved from 94.3 percent to 98.6 percent, although there
was a drop in recall from 27.8 percent to 25.8 percent. In the
2-best recognizer, results were slightly better all around.

The reason for the improvement in performance is likely
attributable to the fact that (perfect) subgoal schema infor-
mation was present in the hierarchical recognizer. This al-
lowed parameter values to be considered given the immedi-
ate child subgoal, giving better context for predictions.

Other Levels The hierarchical parameter recognizer per-
formed well at other levels as well, with precision staying
(for the 1-best case) in the high 90’s and even up to 100 per-
cent for levels 7 and 8. This performance inched up for the
2-best case (with 100 percent precision for levels 4–8).

It is interesting to note that recall begins quite low (25.8
percent for level 0) and then climbs as we go down lev-
els, reaching 100 percent for levels 7 and 8. As mentioned
above, high absolute recall is not to be expected in plan
recognition, as ambiguity is almost always present. The
closer we move to the actual observed action, however, the
higher precision gets. This can be attributed to two factors.
First, subgoals at lower levels are closer to the observed in-
put, and thus deal with less uncertainty about what the pa-
rameter values are.

Second, and probably most important, is that lower-level
subgoals span fewer timesteps than those at higher levels,
meaning that, if parameter values are available, they will be
seen after a shorter number of actions. In the case of levels 7
and 8, all subgoals only spanned one timestep, and thus only
had one chance to get the right parameter values. It turns
out that parameter values at these levels always directly cor-
responded to the action parameters, which is why precision
and recall reach 100 percent here.

Overall, the performance of the parameter recognizer was
very encouraging, especially the performance at lower levels
which had high recall. This is an important factor in our
ability to do specific and accurate partial prediction in the
instantiated goal recognizer, which we move to now.

Instantiated Recognition Results

Here we example the results of experiments on the instanti-
ated hierarchical goal recognizer, which combined both the
schema and parameter recognizers as described above. We
first look at the results at the top level (i.e., level 0) and then
the other levels.

Top-level Results To help interpret the results, we com-
pare performance at the top level to that of our “flat” goal
recognizer (which only made predictions at the top level).
For convenience, the results of the flat instantiated recog-
nizer on the same data set are shown in Table 5.

Hierarchical instantiated results at the top level closely
mirror results of the hierarchical schema recognizer (Blay-
lock & Allen 2005b). This also happened for the flat rec-
ognizer and is to be expected, as schema recognition per-



1-best (ψ = 2.0)

level prec. recall recall/feas. conv. conv./feas. conv. pt
0 98.6% 25.8% 52.0% 44.7% 56.3% 5.0/9.9
1 99.7% 26.4% 52.0% 39.9% 55.2% 4.1/6.3
2 96.7% 53.0% 76.4% 51.6% 57.7% 2.5/4.8
3 98.7% 73.8% 89.4% 73.8% 74.1% 3.1/4.1
4 99.3% 80.0% 94.6% 80.9% 80.9% 3.3/3.8
5 97.5% 82.6% 91.1% 53.1% 53.1% 2.2/3.9
6 99.9% 98.3% 99.3% 50.0% 50.0% 2.0/4.0
7 100% 100% 100% N/A N/A N/A
8 100% 100% 100% N/A N/A N/A

total 98.5% 51.7% 76.5% 51.6% 61.2% 3.5/5.7

2-best (ψ = 2.0)

level prec. recall recall/feas. conv. conv./feas. conv. pt
0 97.7% 40.1% 80.8% 76.0% 95.8% 4.7/9.0
1 99.9% 41.3% 81.2% 63.6% 88.0% 3.5/5.7
2 99.6% 65.9% 95.1% 82.9% 92.8% 2.8/4.7
3 99.8% 81.0% 98.2% 97.6% 97.9% 3.4/4.5
4 100% 83.3% 98.5% 97.6% 97.6% 3.3/3.9
5 100% 89.7% 99.0% 93.0% 93.0% 2.5/3.9
6 100% 99.1% 100% 100% 100% 2.5/4.0
7 100% 100% 100% N/A N/A N/A
8 100% 100% 100% N/A N/A N/A

total 99.5% 62.4% 92.4% 78.6% 93.2% 3.5/5.6

Table 2: Results of Parameter Recognition

1-best (ψ = 2.0)

level prec. recall recall/feas. conv. conv./feas. conv. pt
top 94.3% 27.8% 55.9% 46.9% 59.1% 5.1/10.0

2-best (ψ = 2.0)

level prec. recall recall/feas. conv. conv./feas. conv. pt
top 97.6% 39.2% 78.9% 76.2% 96.1% 4.8/9.0

Table 3: Results of Flat Parameter Recognition on the Monroe Corpus (cf. (Blaylock & Allen 2005b))

1-best (τ = 0.7, ψ = 2.0) 2-best (τ = 0.95, ψ = 2.0)

level prec. recall p% conv. c/p% conv. pt prec. recall p% conv. c/p% conv. pt
0 82.5% 56.4% 24.0% 90.8% 49.8% 5.6/10.3 88.2% 60.2% 23.2% 91.0% 49.9% 5.2/10.3
1 81.3% 52.8% 23.5% 67.6% 26.5% 3.1/6.1 93.8% 75.4% 16.6% 94.8% 18.9% 2.4/5.6
2 85.4% 44.3% 22.5% 45.8% 38.5% 3.4/4.7 89.7% 62.0% 42.1% 84.4% 45.2% 3.6/4.8
3 72.9% 41.7% 82.4% 41.2% 90.6% 3.0/3.5 90.6% 74.4% 81.8% 99.0% 71.0% 3.9/4.5
4 73.6% 50.0% 99.9% 61.8% 100% 3.7/3.7 90.8% 68.6% 96.5% 100% 80.9% 3.8/3.8
5 58.8% 45.7% 100% 6.2% 100% 4.2/4.2 98.2% 76.4% 81.4% 100% 53.1% 2.0/3.9
6 69.3% 69.3% 100% 0.0% N/A N/A 98.3% 98.3% 99.2% 100% 50.0% 4.0/4.0
7 95.2% 95.2% 100% N/A N/A N/A 100% 100% 100% N/A N/A N/A
8 100% 100% 100% N/A N/A N/A 100% 100% 100% N/A N/A N/A

total 79.0% 50.4% 44.1% 61.7% 46.4% 3.9/6.8 91.3% 68.7% 47.2% 92.5% 43.7% 3.6/6.1

Table 4: Results of Instantiated Recognition



1-best (τ = 0.7, ψ = 2.0) 2-best (τ = 0.95, ψ = 2.0)

level prec. recall p% conv. c/p% conv. pt prec. recall p% conv. c/p% conv. pt
top 93.1% 53.7% 20.6% 94.2% 40.6% 5.4/10.0 95.8% 56.6% 21.8% 97.4% 41.1% 5.5/10.1

Table 5: Results of Flat Instantiated Recognition on the Monroe Corpus (cf. (Blaylock & Allen 2005b))

formance limits performance of the instantiated recognizers.
The addition of parameter predictions serves to degrade the
precision and recall of schema recognition results.

In the 2-best case, precision decreased from 95.8% in the
flat recognizer to 88.2% in the hierarchical recognizer. How-
ever, recall increased from 56.6% to 60.2% and parameter
percentage from 21.8% to 23.2%. This difference was more
stark in convergence parameter percentage, which rose from
41.1% to 49.9%.

Although moving to a hierarchical recognizer seemed to
degrade performance at the top level, at least in precision,
this may be somewhat misleading because of the relative
short length 9.5 actions of plans in the Monroe domain. We
believe that longer, more complex plans will make it much
more difficult to predict the top-level goal early on — requir-
ing partial recognition of subgoals. Of course, this remains
to be tested.

Other Levels
Precision and recall at other levels also closely mirror the
performance of the schema recognizer. Precision dips in the
middle levels but this levels out for 2-best prediction, which
achieves precision ranging from the high 80’s to 100 percent
(with recall ranging in the 60’s and 70’s for high levels and
high 90’s and 100 percent for the lower levels).

Parameter prediction for levels 1 and 2 remains in the
20’s, with a sudden jump to 82.4 percent at level 3, 99.9
percent at level 4, and 100 percent for the lower levels, for
the 1-best level. Note that the drop in parameter prediction
at several levels in the 2-best case is due to the fact that the
recognizer gets more cases right (i.e., increases recall), but
that many of the new correct predictions have less instanti-
ated parameter values. Thus the decrease in number reflects
that the recognizer is getting more correct predictions, but
it does not reflect a decrease in performance for the cases it
got correct in 1-best prediction.

Related Work
Although parameter prediction has been included in logical-
based (e.g., (Kautz 1991)) and case-based (e.g., (Cox &
Kerkez To appear)) plan recognizers, relatively little atten-
tion has been given it in work on probabilistic plan recog-
nizers. For example, (Pynadath & Wellman 2000) and (Bui
2003) build hierarchical goal recognizers but treat goals as
atomic (basically like our goal schemas).

Probabilistic systems which do include parameter recog-
nition typically use probabilities for goal schema prediction,
but logical-based methods for filling in parameters (e.g.,
(Bauer 1995)). The recognizer in (Charniak & Goldman
1993) dynamically constructs a Belief Network (BN) with

nodes for action and goal schemas, objects (possible param-
eter values), and relations that use the latter to fill slots in the
former. For a given parameter slot, however, they consider
all objects of the correct type to be equally likely, whereas
we distinguish these using probabilities learned from a cor-
pus. As the network grows at least with the number of ob-
served actions (and likely the number of goal schemas), it is
unclear if this approach would be scalable in general.

Conclusions
We have presented a hierarchical goal recognizer which sta-
tistically recognizes both goal schemas and their parameter
values. The recognizer we have described here has two nice
features (which correspond to the two desired traits of goal
recognizers described above). First, recognition is fast and
scalable, running in time quadratic to the number of possi-
ble goal schemas and number of observations. Second, the
recognizer supports two forms of partial goal recognition:
partial parameter prediction and threshold subgoal level pre-
diction. This allows the recognizer to make predictions ear-
lier in the agent’s task execution than would be possible for
all-or-nothing prediction.

An obvious need for future work is to test the recognizer
on more corpora, especially real data. This is hindered by
the lack of appropriate corpora for plan recognition in the
field, especially since our approach expects corpora labeled
with hierarchical plan structure.
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