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Abstract

Classifiers that are deployed in the field can be used and
evaluated in ways that were not anticipated when the model
was trained. The ultimate evaluation metric may not have
been known to the modeler at training time, additional per-
formance criteria may have been added, the evaluation met-
ric may have changed over time, or the real-world evaluation
procedure may have been impossible to simulate. But un-
foreseen ways of measuring model utility can degrade perfor-
mance. Our objective is to provide experimental support for
modelers who face potential “cross-metric” performance de-
terioration. First, to identify model-selection metrics that lead
to stronger cross-metric performance, we characterize the ex-
pected loss where the selection metric is held fixed and the
evaluation metric is varied. Second, we show that the number
of data points evaluated by a selection metric has a substan-
tial effect on the optimal evaluation. In trying to address both
these issues, we hypothesize that whether classifiers are cal-
ibrated to output probabilities may influence these issues. In
our consideration of the role of calibration, we show that our
experiments demonstrate that cross-entropy is the highest-
performing selection metric where little data is available for
selection. With these experiments, modelers may be in a bet-
ter position to choose selection metrics that are robust where
it is uncertain what evaluation metric will be applied.

Introduction

Most machine learning research on classification has as-
sumed that it is best to train and select a classifier accord-
ing to the metric upon which it ultimately will be evaluated.
However, this characterization makes several assumptions
that we question here. What if we don’t know the metric
upon which the classifier will be judged? What if the clas-
sification objective is not optimal performance, but simply
robust performance across several metrics? Does it make
any difference how much data is available on which to base
model performance estimates? What if we want at least to
avoid the worst-performing selection metrics?

In this paper we give experimental results to begin to an-
swer questions like the ones we have just posed. The results
show that the choice of selection metric depends to a large
degree on how much data is available to measure perfor-
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mance and depends also on whether the underlying models
produce accurate probabilities.

It is not so far-fetched that we may not have as much
knowledge of — and access to — the ultimate evaluation
metric as is usually assumed. In some situations a mod-
eler may have the discretion to build models that optimize
one of several metrics but not have access to an classifica-
tion algorithm that directly optimizes the evaluation metric.
For example, the modeler may decide between optimizing
cross-entropy or root-mean-squared error through the choice
of model class and training algorithm. But if these models
are evaluated with respect to the F-score metric, it would be
important to compare expected performance losses in going
from cross-entropy to F-score and from root-mean-squared
error to F-score. These considerations arise in natural lan-
guage processing (NLP) tasks, such as noun phrase corefer-
ence resolution, where classification models may be built to
maximize accuracy, but where F-score or average precision
provides the ultimate measure of success (Munson, Cardie,
& Caruana 2005). In fact, NLP tasks are often evaluated on
multiple reporting metrics, compounding the cross-metric
problem.

The substantial data preprocessing that is often required
for NLP systems often places NLP classifiers in a pipeline
where they are judged according to the performance they
enable in downstream modules that receive the class pre-
dictions. Embedded classifiers may be subjected to eval-
uation(s) that cannot easily be tested and that may change
according to evolving criteria of the entire system.

A marketing group in a large organization may request a
model that maximizes response lift at 10% of the universe
of customers. After the model has been built, the market-
ing budget for the campaign is cut, but the marketing group
has the campaign ready to roll out and so not have the time
to commission another model. In that case the database
marketing group may decide to contact only 5% of the cus-
tomers. The model that optimized response at the 10% level
will now be judged in the field according to a different crite-
rion: response from 5% of the customers. (Alternatively, the
marketing group may not even specify its performance cri-
terion, but may request a model that “simply” yields optimal
profits, accuracy, and lift.) What model should be selected
to be robust to changes such as these?

Thus real-world considerations may make evaluation



more complicated than might be generally assumed. Per-
formance metrics may change over time, may not be known,
may be difficult to simulate, or may be numerous. In this
paper we examine uncertain metric evaluation by providing
experimental answers to two questions:

1. What selection metrics yield the highest performance
across commonly applied evaluation metrics?

2. What is the effect of the number of data points available
for making model selection judgments where the ultimate
evaluation metric may be unknown?

Related Research

As part of an extensive set of experiments, Huang and Ling
defined a model selection ability measure called MSA to re-
flect the relative abilities of eight metrics to optimize one
of three target metrics: accuracy, area under the ROC curve
(“AUC”) and lift (Huang & Ling 2006). Given one of these
three “goal” metrics, MSA measures the probability that one
of the eight metrics correctly identifies which member of all
pairs of models will be better on the goal metric. While
this is an attractive summary approach, our experiments hew
more closely to how we see model selection done in prac-
tice. Our experiments measure how one metric’s best per-
forming models perform when measured by a second metric.
Since practitioners tend to focus on superior models only,
our methodology also reflects that bias. Our empirical study
below also evaluates all our metrics as reporting methods
rather than limiting the study to a subset of three goal met-
rics. The roles of probability calibration and data set size
in reducing performance loss are also studied additionally
here.

Several related efforts to develop algorithms to handle
multiple performance criteria have also been made (Soares,
Costa, & Brazdil 2000; Nakhaeizadeh & Schnabl 1997;
Spiliopoulou et al.  1998).  Additionally, Ting and
Zheng (1998) have provided an approach to deal with
changes in costs over time.

As part of a statistical study of AUC, Rosset (2004)
showed empirically that, even where the goal is to max-
imize accuracy, optimizing AUC can be a superior strat-
egy for Naive Bayes and k-nearest neighbor classifiers.
Joachims (2005) has extended support vector methodology
to optimize directly non-linear performance measures, mea-
sures that cannot be decomposed into measures over indi-
vidual examples, and any measure that can be derived from
a contingency table. Cortes and Mohri (2004) give a statis-
tical analysis of accuracy and AUC and show that classifiers
with the same accuracy can yield different AUC values when
the accuracy is low.

Experimental Design
Performance Metrics

The performance metrics we study are accuracy (ACC),
lift at the 25th percentile (LFT), F-score (FSC), area under
the ROC curve (ROC), average precision (APR), precision-
recall break-even point (BEP), root-mean squared error
(RMS), and mean cross-entropy (MXE). We also synthesize
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a hybrid metric that is defined as the equally-weighted mean
performance under RMS, ROC and ACC (called “ALL”).
We follow the definitions of these performance metrics
found in Caruana and Niculescu-Mizil (2004), since they are
implemented in the PERF code that was made available by
Caruana in connection with the KDD Cup 2004.

We have also adopted the same conventions as to the nor-
malization of classifier performance with respect to vari-
ous metrics. Unfortunately, normalization is necessary in
order to compare directly metrics with different measure-
ment scales. Metrics have been normalized to values in [0, 1]
where 0 represents the baseline performance of classifying
all instances with the most frequent class in the data, and 1
corresponds to the best performance of any model developed
in our lab on that data '.

Problems

Eleven binary classification problems were used in these ex-
periments. ADULT, COV_TYPE and LETTER are from the
UCI Repository (Blake & Merz 1998). COV_TYPE has
been converted to a binary problem by treating the largest
class as the positive and the rest as negative. We converted
LETTER to boolean in two ways. LETTER.pl treats “O”
as positive and the remaining 25 letters as negative, yielding
a very unbalanced problem. LETTER.p2 uses letters A-M
as positives and the rest as negatives, yielding a well bal-
anced problem. HS is the IndianPine92 data set (Gualtieri
et al. 1999) where the difficult class Soybean-mintill is the
positive class. SLAC is a problem from the Stanford Linear
Accelerator. MEDIS and MG are medical data sets. COD,
BACT, and CALHOUS are three of the datasets used in (Per-
lich, Provost, & Simonoff 2003). ADULT, COD, and BACT
contain nominal attributes. For ANNs, SVMs, KNNs, and
LOGREG we transform nominal attributes to boolean (one
boolean per value).

Model Types

The 10 model type that we used in this experiment were:
back-propagation neural networks, bagging of decision
trees, boosting of decision trees, k-nearest neighbor, logis-
tic regression, Naive Bayes, random forests, decision trees,
bagged decision stumps and support vector machines. We
create a library of approximately 2,000 models trained on
training sets of size 4,000. We train each of these models on
each of the 11 problems to yield approximately 22,000 mod-
els. Each decision tree, bagged tree, boosted tree, boosted
stump, random forest and Naives Bayes model is trained
twice, once with transformed attributes and once with the
original ones. The models are all as described in (Caruana
& Niculescu-Mizil 2006).

The output of such learning methods as boosted deci-
sion trees, boosted decision stumps, SVMs and Naive Bayes
cannot be interpreted as well-calibrated posterior probabili-
ties (Niculescu-Mizil & Caruana 2005). This has a negative
impact on the metrics that interpret predictions as probabil-
ities: RMS, MXE and ALL (which invokes RMS). To ad-

!The performance upper bounds are available to interested re-
searchers.
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Figure 1: Average loss across all nine reporting metrics.

dress this problem, we use post-training calibration to trans-
form the predictions of all the methods into well-calibrated
probabilities. In this paper calibration is done via Platt scal-
ing (Platt 1999). To fit the calibrated models we use a set
of 1000 points that are reserved solely for calibration (i.e.
they are not part of the training, validation or final test set).
While in practice one would use the same set of points both
for calibration and for model selection, here we choose to
use separate sets in order to separate the effects of calibra-
tion from the effects of model selection on performance. The
effect of calibration will be discussed later in the paper.

The Effect of Limited Sample Size on Selection
Metric Choice

In this section we discuss the effect of small data sample size
on the decision as to which selection metrics to use. Our
primary objective in this section is to quantify the loss in
selecting on one metric but reporting on another. To obtain
the results in this section, we use the following methodol-
ogy. For each problem, we train each of the approximately
2,000 models on a 4,000-point training set. All the trained
models are then evaluated on a validation (selection) set, and
the model with the best performance on the selection metric
is found. Finally, we report the evaluation (reporting) met-
ric performance of the best model on a final independent
test set. To ensure that the results are not dependent on the
particular train/validation/test set split, we repeat the experi-
ment five times and report the average performance over the
five randomized trials.

To investigate how the size of the selection set affects the
performance of model selection for different selection met-
rics, we consider selection sets of 100, 200, 500 and 1000
points. For comparison we also show results for “optimal”
selection, where the final test set is used as the selection set.

We use the following experimental procedure. We are
given a problem, a selection metric, s, and a reporting met-
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ric, . We choose from our library the classifier Cs that has
the highest normalized score under the selection metric s.
We then measure the score of that classifier C's under the
reporting metric r. Call that score 7(Cy).

Next we identify the classifier C* that has the highest per-
formance on the reporting metric. Call that score r(C*) .
The difference r(C*) — r(Cs) is the loss we report. The
selection of C is done on a validation set and the report-
ing metric performance of both classifiers is computed on
an independent test set.

Figure 1 shows the loss in performance due to model se-
lection for nine selection metrics averaged across the nine
reporting metrics. The tenth line, ORM (Optimize to the
Right Metric), shows the loss of always selecting using the
evaluation metric (i.e. select using ACC when the evaluation
metric is ACC, ROC when the evaluation metric is ROC,
etc.). On the X axis we vary the size of the selection set
on a log scale. The right-most point on the graph, labeled
OPT, shows the loss when selection is done “optimally” (by
cheating) using the final test set. This represents the best
achievable performance for any selection metric, and can be
viewed as a bias, or mismatch, between the selection metric
and the evaluation metric.>

The most striking result is the good performance of se-
lecting on mean cross-entropy (MXE) for small sizes of the
selection set. When the selection set has only 100 or 200
points, using cross-entropy as the selection metric incurs the
lowest loss. In fact, at 100 and 200 points, selecting on MXE
has the lowest loss for every individual reporting metric, not
only on average! This may be a surprising result in that it
undermines the common belief that it is always better to op-
timize to the metric on which the classifier will be evaluated.

We propose two hypotheses that would account for the
superior performance of MXE for small data sets, but we do

20f course, this bias/mismatch depends on the underlying set
of classifiers available for selection.
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Figure 4: Loss when reporting on APR.

not yet have support for these possible explanations. MXE
provides the maximum likelihood probability estimation of
the binary targets. Under this hypothesis, MXE reflects
the “correct” prior for target values as a binomial distribu-
tion (Mitchell 1997). Priors are particularly important where
data are scarce. The second hypothesis recognizes that (of
the metrics we consider) MXE assesses the largest penalty
for large errors, which may be desirable where not much
data is available.

For larger selection sets, MXE continues to be competi-
tive, but ROC and ALL catch up when the selection set has
500 points. At 1000 points all metrics except BEP, ACC,
FSC, and LFT have similar performance (on average across
reporting metrics). This result suggests that, when the eval-
uation metric is uncertain, cross-entropy should be used as
a selection metric, especially when validation data is scarce.
When the validation set is larger, ROC, RMS and ALL also
are robust selection metrics. LFT and FSC seem to be the
least robust metrics; BEP and ACC were slightly better than
LFT and FSC.

Figure 2 shows the performance for a few selection met-
rics when ACC is the evaluation metric. The figure shows
ROC is superior as a selection metric to ACC even when the
evaluation metric is ACC. ROC-based selection yields lower
loss across all selection set sizes (except of course for OPT
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Figure 5: Loss when reporting on FSC.

where ACC has zero loss by definition). This confirms the
observation made originally by Rosset 2004. Although at
low selection set sizes MXE has the best performance (fol-
lowed by RMS), looking at the OPT point, we see that MXE
actually has the largest bias (followed by RMS). Of all met-
rics ALL has the smallest bias.

Figure 3 shows the case when the performance is evalu-
ated using a combination of multiple metrics. For the figure,
the reporting metric is ALL which is an equally weighed
average of ACC, RMS and ROC. Selecting on the more ro-
bust RMS or ROC metrics performs as well as selecting on
the evaluation metric ALL. This is not the case for ACC,
which is a less robust metric. For small validation sets,
cross-entropy is again the best selection metric.

In the Information Retrieval (IR) community, APR is of-
ten preferred to ROC as a ranking evaluation metric because
it is more sensitive to the high end of the ranking and less
sensitive to the low end. Figure 4 shows the loss in normal-
ized score when the evaluation metric is APR. Besides APR
and ROC, we also show the selection performance of MXE
and two other IR metrics: BEP and FSC. The results suggest
that selection based on ROC performs the same, or slightly
better than selecting on APR directly. In fact ROC has a very
low bias relative to APR, as shown by the OPT point in the
graph. The other two IR metrics have lower performance,
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with FSC incurring a significantly higher loss.

Figure 5 depicts the loss in normalized score when using
FSC as an evaluation metric. This figure may also be of
interest to IR practitioners, since FSC is often relied upon in
that field. The figure shows that, except for small validation
set sizes, if FSC is the metric of interest, then FSC should
also be used as a selection metric. For small validation sets,
cross-entropy again provides significantly lower loss. One
other interesting observation is the large mismatch between
FSC and the other metrics (the OPT point in the graph). This
mismatch is one reason why, given enough validation data,
FSC is the preferred selection metric when one is interested
in optimizing FSC.

One other interesting case is shown in Figure 6 for lift as
the evaluation metric. The figure shows that even if one is
interested in lift, one should not select based on lift. Cross-
entropy, squared error and ROC all lead to selecting better
models.

Interestingly, even when squared error is the evaluation
metric (Figure 7), it is still better to select using cross-
entropy when the validation set is small. The result is some-
what surprising given that squared error and cross-entropy
are similar metrics in that they both interpret the predic-
tions as conditional probabilities. This might suggest that
the good performance of cross-entropy when data is scarce
is due to the high penalty it puts on the cases where the pre-
dicted probability of the true class is very low.

The Effect of Model Probability Calibration
on Selection Metric Choice

In this section we investigate how cross-metric optimization
performance is affected by the presence of poorly calibrated
models such as boosted trees, boosted stumps, SVMs and
Naive Bayes. To this end, we repeat the experiments in the
previous section, but using the original uncalibrated models
instead of the Platt-calibrated ones.

As expected, having a mix of well-calibrated and poorly
calibrated models hurts cross-metric optimization. The ef-
fect of poorly calibrated models is two-fold. On one hand,
when selecting on a metric such as ROC, APR or ACC that
does not interpret predictions as probabilities, and evaluat-
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Figure 7: Loss when reporting on RMS.

ing on a metric such as RMS, MXE or ALL that is sensitive
to probability calibration, it may happen that the selected
model, while performing well on the ‘“non-probability” mea-
sures, is poorly calibrated, thus incurring a high loss on the
“probability” measures.

This effect can be seen clearly in Figure 8. The figure
shows the loss in normalized score when the reporting met-
ric is MXE, and the selection metric is MXE, ROC or ACC.
For each selection metric, two lines are shown: one rep-
resents the performance when selecting from uncalibrated
models, and the other shows the performance when selecting
from Platt-calibrated models. Selecting from uncalibrated
models, using either ROC or ACC as a selection metric (the
top two lines) incurs a very large loss in performance (note
the scale). In fact, quite often, the MXE performance of the
selected models is worse than that of the baseline model (the
model that predicts, for each instance, the ratio of the posi-
tive examples to all examples in the training set). Calibrated
models eliminate this problem, driving down the loss.

On the other hand, when selecting on one of the “prob-
ability” measures (RMS, MXE or ALL), the poorly cali-
brated methods will not be selected because of their low
performance on such metrics. Some of the poorly calibrated
models, however, do perform very well on “non-probability”
measures such as ROC, APR or ACC. This leads to in-
creased loss when selecting on probability measures and
evaluating on non-probability ones because, in a sense, se-
lection is denied access to some of the best models.

Figure 9 shows the loss in normalized score when the re-
porting metric is APR, and the selection metric is MXE,
ROC or ACC. Looking at MXE as a selection metric we
see that, as expected, the loss from model selection is higher
when using calibrated models than when using uncalibrated
ones. Since calibration does not affect ROC or APR, select-
ing on ROC and evaluating on APR yields the same results
regardless of whether the models were calibrated. This is not
true when selecting on ACC because calibration can affect
threshold metrics by effectively changing the threshold.
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Figure 8: Loss when reporting on MXE.

Conclusion

Our experiments have shown that when only a small amount
of data is available, the cross-entropy selection metric yields
the strongest cross-metric performance. The experiments
have also shown that calibration can affect the performance
of selection metrics in general, and of cross-entropy in par-
ticular. In general, MXE and ROC performed strongly as
selection metrics and FSC and LFT performed poorly. The
next step in our research is to go beyond the empirical results
presented in this paper and try to create a formal decompo-
sition of cross-metric loss.
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