
Author Disambiguation Using
Error-driven Machine Learning with a Ranking Loss Function

Aron Culotta, Pallika Kanani, Robert Hall, Michael Wick, Andrew McCallum
Department of Computer Science

University of Massachusetts
Amherst, MA 01003

Abstract
Author disambiguation is the problem of determining
whether records in a publications database refer to the
same person. A common supervised machine learning
approach is to build a classifier to predict whether a pair
of records is coreferent, followed by a clustering step
to enforce transitivity. However, this approach ignores
powerful evidence obtainable by examining sets (rather
than pairs) of records, such as the number of publica-
tions or co-authors an author has. In this paper we
propose a representation that enables these first-order
features over sets of records. We then propose a train-
ing algorithm well-suited to this representation that is
(1) error-driven in that training examples are generated
from incorrect predictions on the training data, and (2)
rank-based in that the classifier induces a ranking over
candidate predictions. We evaluate our algorithms on
three author disambiguation datasets and demonstrate
error reductions of up to 60% over the standard binary
classification approach.

Introduction
Record deduplication is the problem of deciding whether
two records in a database refer to the same object. This prob-
lem is widespread in any large-scale database, and is particu-
larly acute when records are constructed automatically from
text mining.

Author disambiguation, the problem of de-duplicating au-
thor records, is a critical concern for digital publication li-
braries such as Citeseer, DBLP, Rexa, and Google Scholar.
Author disambiguation is difficult in these domains be-
cause of abbreviations (e.g., Y. Smith) misspellings (e.g., Y.
Smiht), and extraction errors (e.g., Smith Statistical).

Many supervised machine learning approaches to author
disambiguation have been proposed. Most of these are vari-
ants of the following recipe: (1) train a binary classifier to
predict whether a pair of authors are duplicates, (2) apply the
classifier to each pair of ambiguous authors, (3) combine the
classification predictions to cluster the records into duplicate
sets.

This approach can be quite accurate, and is attractive
because it builds upon existing machine learning technol-
ogy (e.g., classification and clustering). However, because

Copyright c© 2007, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

the core of this approach is a classifier over record pairs,
nowhere are aggregate features of an author modeled ex-
plicitly. That is, by restricting the model representation to
evidence over pairs of authors, we cannot leverage evidence
available from examining more than two records.

For example, we would like to model the fact that authors
are generally affiliated with only a few institutions, have
only one or two different email addresses, and are unlikely
to publish more than thirty publications in one year. None
of these constraints can be captured with a pairwise classi-
fier, which, for example, can only consider whether pairs of
institutions or emails match.

In this paper we propose a representation for author dis-
ambiguation that enables these aggregate constraints. The
representation can be understood as a scoring function over
a set of authors, indicating how likely it is that all members
of the set are duplicates.

While flexible, this new representation can make it diffi-
cult to estimate the model parameters from training data. We
therefore propose a class of training algorithms to estimate
the parameters of models adopting this representation. The
method has two main characteristics essential to its perfor-
mance. First, it is error-driven in that training examples are
generated based on mistakes made by the prediction algo-
rithm. This approach focuses training effort on the types of
examples expected during prediction.

Second, it is rank-based in that the loss function induces a
ranking over candidate predictions. By representing the dif-
ference between predictions, preferences can be expressed
over partially-correct or incomplete solutions; additionally,
intractable normalization constants can be avoided because
the loss function is a ratio of terms.

In the following sections, we describe the representation
in more detail, then present our proposed training methods.
We evaluate our proposals on three real-world author dedu-
plication datasets and demonstrate error-reductions of up to
60%.

Motivating Examples
Table 1 shows three synthetic publication records that
demonstrate the difficulty of author disambiguation. Each
record contains equivalent author strings, and the publica-
tion titles contains similar words (networks, understanding,

32

Author Title Institution Year
Y. Li Understanding Social Networks Stanford 2003
Y. Li Understanding Network Protocols Carnegie Mellon 2002
Y. Li Virtual Network Protocols Peking Univ. 2001

Table 1: Author disambiguation example with multiple institutions.

Author Co-authors Title
P. Cohen A. Howe How evaluation guides AI research
P. Cohen M. Greenberg, A. Howe, ... Trial by Fire: Understanding the design requirements ... in complex environments
P. Cohen M. Greenberg MU: a development environment for prospective reasoning systems

Table 2: Author disambiguation example with overlapping co-authors.

protocols). However, only the last two authors are dupli-
cates.

Consider a binary classifier that predicts whether a pair of
records are duplicates. Features may include the similarity
of the author, title, and institution strings. Given a labeled
dataset, the classifier may learn that authors often have the
same institution, but since many authors have multiple insti-
tutions, the pairwise classifier may still predict that all of the
authors in Table 1 are duplicates.

Consider instead a scoring function that considers all
records simultaneously. For example, this function can com-
pute a feature indicating that an author is affiliated with three
different institutions in a three year period. Given training
data in which this event is rare, it is likely that the classifier
would not predict all the authors in Table 1 to be duplicates.

Table 2 shows an example in which co-author informa-
tion is available. It is very likely that two authors with sim-
ilar names that share a co-author are duplicates. However,
a pairwise classifier will compute that records one and three
do not share co-authors, and therefore may not predict that
all of these records are duplicates. (A post-processing clus-
tering method may merge the records together through tran-
sitivity, but only if the aggregation of the pairwise predic-
tions is sufficiently high.)

A scoring function that considers all records simultane-
ously can capture the fact that records one and three each
share a coauthor with record two, and are therefore all likely
duplicates.

In the following section, we formalize this intuition, then
describe how to estimate the parameters of such a represen-
tation.

Scoring Functions for Disambiguation
Consider a publications database D containing records
{R1 . . . Rn}. A record Ri consists of k fields {F1 . . . Fk},
where each field is an attribute-value pair Fj = 〈attribute,
value〉. Author disambiguation is the problem of parti-
tioning {R1 . . . Rn} into m sets {A1 . . .Am}, m ≤ n,
where Al = {Rj . . . Rk} contains all the publications au-
thored by the lth person. We refer to a partitioning of D as
T (D) = {A1 . . .Am}, which we will abbreviate as T .

Given some partitioning T , we wish to learn a scoring
function S : T �→ R such that higher values of S(T) cor-
respond to more accurate partitionings. Author disambigua-

tion is then the problem of searching for the highest scoring
partitioning:

T ∗ = argmax
T

S(T)

The structure of S determines its representational power.
There is a trade-off between the types of evidence we can
use to compute S(T) and the difficulty of estimating the pa-
rameters of S(T). Below, we describe a pairwise scoring
function, which decomposes S(T) into a sum of scores for
record pairs, and a clusterwise scoring function, which de-
composes S(T) into a sum of scores for record clusters.

Let T be decomposed into p (possibly overlapping) sub-
structures {t1 . . . tp}, where ti ⊂ T indicates that ti is a
substructure of T . For example, a partitioning T may be
decomposed into a set of record pairs Ri, Rj .

Let f : t → Rk be a substructure feature function that
summarizes t with k real-valued features1.

Let s : f(t) × Λ → R be a substructure scoring function
that maps features of substructure t to a real value, where
Λ ∈ Rk is a set of real-valued parameters of s. For exam-
ple, a linear substructure scoring function simply returns the
inner product 〈Λ, f(t)〉.

Let Sf : s(f(t1), Λ) × . . . × s(f(tn), Λ) → R be a fac-
tored scoring function that combines a set of substructure
scores into a global score for T . In the simplest case, Sf

may simply be the sum of substructure scores.
Below we describe two scoring functions resulting from

different choices for the substructures t.

Pairwise Scoring Function
Given a partitioning T , let tij represent a pair of records
Ri, Rj . We define the pairwise scoring function as

Sp(T, Λ) =
∑
ij

s(f(tij), Λ)

Thus, Sp(T) is a sum of scores for each pair of records.
Each component score s(f(tij), Λ) indicates the preference
for the prediction that records Ri and Rj co-refer.

This is analogous to approaches adopted recently using
binary classifiers to perform disambiguation (Torvik et al.
2005; Huang, Ertekin, & Giles 2006).

1Binary features are common as well: f : t → {0, 1}k

33

Clusterwise Scoring Function
Given a partitioning T , let tk represent a set of records
{Ri . . . Rj} (e.g., tk is a block of the partition). We de-
fine the clusterwise scoring function as the sum of scores for
each cluster:

Sc(T, Λ) =
∑
k

s(f(tk), Λ)

where each component score s(f(tk, Λ)) indicates the pref-
erence for the prediction that all the elements {Ri . . . Rj}
co-refer.

Learning Scoring Functions
Given some training database DT for which the true author
disambiguation is known, we wish to estimate the parame-
ters of S to maximize expected disambiguation performance
on new, unseen databases. Below, we outline approaches to
estimate Λ for pairwise and clusterwise scoring functions.

Pairwise Classification Training
A standard approach to train a pairwise scoring function is
to generate a training set consisting of all pairs of authors
(if this is impractical, one can prune the set to only those
pairs that share a minimal amount of surface similarity). A
classifier is estimated from this data to predict the binary
label SameAuthor.

Once the classifier is created, we can set each substruc-
ture score s(f(tij)) as follows: Let p1 = P (SameAuthor
= 1|Ri, Rj). Then the score is

s(f(tij)) ∝
{

p1 if Ri, Rj ∈ T

1 − p otherwise

Thus, if Ri, Rj are placed in the same partition in T , then
the score is proportional to the classifier output for the pos-
itive label; else, the score is proportional to output for the
negative label.

Clusterwise Classification Training
The pairwise classification scheme forces each coreference
decision to be made independently of all others. Instead,
the clusterwise classification scheme implements a form of
the clusterwise scoring function described earlier. A binary
classifier is built that predicts whether all members of a set
of author records {Ri · · ·Rj} refer to the same person. The
scoring function is then constructed in a manner analogous
to the pairwise scheme, with the exception that the probabil-
ity p1 is conditional on an arbitrarily large set of mentions,
and s ∝ p1 only if all members of the set fall in the same
block of T .

Error-driven Online Training
We employ a sampling scheme that selects training exam-
ples based on errors that occur during inference on the la-
beled training data. For example, if inference is performed
with agglomerative clustering, the first time that two non-
coreferent clusters are merged, the features that describe that
merge decision are used to update the parameters.

Algorithm 1 Error-driven Training Algorithm
1: Input:

Training set D
Initial parameters Λ0

Prediction algorithm A
2: while Not Converged do
3: for all 〈X, T ∗(X)〉 ∈ D do
4: T(X) ⇐ A(X, Λt)
5: De ⇐ CreateExamplesFromErrors(T(X), T ∗(X))
6: Λt+1 ⇐ UpdateParameters(De, Λ

t)
7: end for
8: end while

Let A be a prediction algorithm that computes a sequence
of predictions, i.e., A : X × Λ → T 0(X) × . . . × T r(X),
where T r(X) is the final prediction of the algorithm. For
example, A could be a clustering algorithm. Algorithm 1
gives high-level pseudo-code of the description of the error-
driven framework..

At each iteration, we enumerate over the training exam-
ples in the original training set. For each example, we run
A with the current parameter vector Λt to generate T(X), a
sequence of predicted structures for X .

In general, the function CreateExamplesFromErrors can
select an arbitrary number of errors contained in T(X). In
this paper, we select only the first mistake in T(X). When
the prediction algorithm is computationally intensive, this
greatly increases efficiency, since inference is terminated as
soon as an error is made.

Given De, the parameters Λt+1 are set based on the er-
rors made using Λt. In the following section, we describe
the nature of De in more detail, and present a ranking-based
method to calculate Λt.

Learning To Rank

An important consequence of using a search-based cluster-
ing algorithm is that the scoring function is used to com-
pare a set of possible modifications to the current prediction.
Given a clustering T i, let N (T i) be the set of predictions in
the neighborhood of T i. T i+1 ∈ N (T i) if the prediction al-
gorithm can construct T i+1 from T i in one iteration. For ex-
ample, at each iteration of the greedy agglomerative system,
N (T i) is the set of clusterings resulting from all possible
merges a pair of clusters in T i. We desire a training method
that will encourage the inference procedure to choose the
best possible neighbor at each iteration.

Let N̂(T) ∈ N (T) be the neighbor of T that has
the maximum predicted global score, i.e., N̂(T) =
argmaxT ′∈N (T) Sg(T ′). Let S∗ : T → R be a global scor-
ing function that returns the true score for an object, for ex-
ample the accuracy of prediction T .

Given this notation, we can now fully describe the method
CreateExamplesFromErrors in Algorithm 1. An error occurs
when there exists a structure N∗(T) such that S∗(N∗(T)) >

S∗(N̂(T)). That is, the best predicted structure N̂(T) has a
lower true score than another candidate structure N∗(T).

34

A training example 〈N̂(T), N∗(T)〉 is generated2, and a
loss function is computed to adjust the parameters to encour-
age N∗(T) to have a higher predicted score than N̂(T). Be-
low we describe two such loss functions.

Ranking Perceptron The perceptron update is

Λt+1 = Λt + y · F (T)

where y = 1 if T = N∗(T), and y = −1 otherwise.
This is the standard perceptron update (Freund &

Schapire 1999), but in this context it results in a ranking up-
date. The update compares a pair of F (T) vectors, one for
N̂(T) and one for N∗(T). Thus, the update actually oper-
ates on the difference between these two vectors. Note that
for robustness we average the parameters from each iteration
at the end of training.

Ranking MIRA We use a variant of MIRA (Margin In-
fused Relaxed Algorithm), a relaxed, online maximum mar-
gin training algorithm (Crammer & Singer 2003). We up-
dates the parameter vector with three constraints: (1) the
better neighbor must have a higher score by a given margin,
(2) the change to Λ should be minimal, and (3) the inferior
neighbor must have a score below a user-defined threshold τ
(0.5 in our experiments). The second constraint is to reduce
fluctuations in Λ. This optimization is solved through the
following quadratic program:

Λt+1 = argmin
Λ

||Λt − Λ||2 s.t.

S(N∗(T), Λ)− S(N̂(T), Λ) ≥ 1

S(N̂ , Λ) < τ

The quadratic program of MIRA is a norm-minimization
that is efficiently solved by the method of Hildreth (Censor
& Zenios 1997). As in perceptron, we average the parame-
ters from each iteration.

Experiments
Data
We used three datasets for evaluation:
• Penn: 2021 citations, 139 unique authors

• Rexa: 1459 citations, 289 unique authors
• DBLP: 566 citations, 76 unique authors

Each dataset contains multiple sets of citations authored
by people with the same last name and first initial. We split
the data into training and testing sets such that all authors
with the same first initial and last name are in the same split.

The features used for our experiments are as follows. We
use the first and middle names of the author in question and
the number of overlapping co-authors. We determine the
rarity of the last name of the author in question using US

2While in general De can contain the entire neighborhood
N (T), in this paper we restrict De to contain only two structures,
the incorrectly predicted neighbor and the neighbor that should
have been selected.

census data. We use several different similarity measures
on the title of the two citations such as the cosine similar-
ity between the words, string edit distance, TF-IDF measure
and the number of overlapping bigrams and trigrams. We
also look for similarity in author emails, institution affili-
ation and the venue of publication whenever available. In
addition to these, we also use the following first-order fea-
tures over these pairwise features: For real-valued features,
we compute their minimum, maximum and average values;
for binary-valued features, we calculate the proportion of
pairs for which they are true, and also compute existential
and universal operators (e.g., “there exist a pair of authors
with mismatching middle initials”).

Results
Table 3 summarizes the various systems compared in our ex-
periments. The goal is to determine the effectiveness of the
clusterwise scoring functions, error-driven example genera-
tion, and rank-based training. In all experiments, prediction
is performed with greedy agglomerative clustering.

We evaluate performance using three popular measures:
Pairwise, the precision and recall for each pairwise deci-
sion; MUC (Vilain et al. 1995), a metric commonly used in
noun coreference resolution; and B-Cubed (Amit & Bald-
win 1998).

Tables 4, 5, and 6 present the performance on the three
different datasets. Note that the accuracy varies significantly
between datasets because each has quite different charac-
teristics (e.g., different distributions of papers per unique
author) and different available attributes (e.g., institutions,
emails, etc.).

The first observation is that the simplest method of es-
timating the parameters of the clusterwise score performs
quite poorly. C/U/L trains the clusterwise score by uni-
formly sampling sets of authors and training a binary classi-
fier to indicate whether all authors are duplicates. This per-
forms consistently worse than P/A/L, which is the standard
pairwise classifier.

We next consider improvements to the training algorithm.
The first enhancement is to perform error-driven training.
By comparing C/U/L with C/E/Pc (the error-driven per-
ceptron classifier) and C/E/Mc (the error-driven MIRA
classifier), we can see that performing error-driven training
often improves performance. For example, in Table 6, we
see pairwise F1 increase from 82.4 for C/U/L to 93.1 for
C/E/Pc and to 91.9 for C/E/Mc. However, this improve-
ment is not consistent across all datasets. Indeed, simply
using error-driven training is not enough to ensure accurate
performance for the clusterwise score.

The second enhancement is to perform a rank-based pa-
rameter update. With this additional enhancement, the clus-
terwise score consistently outperforms the pairwise score.
For example, in Table 5, C/E/Pr obtains nearly a 60%
reduction in pairwise F1 error over the pairwise scorer
P/A/L. Similarly, in Table 5, C/E/Mr obtains a 35%
reduction in pairwise F1 error P/A/L. While perceptron
does well on most of the datasets, it performs poorly on
the DBLP data (C/E/PR, Table 6). Because the percep-
tron update does not constrain the incorrect prediction to

35

Component Name Description

Score Representation Pairwise (P) See Section Pairwise Scoring Function.
Clusterwise (C) See Section Clusterwise Scoring Function.

Training Example Generation
Error-Driven (E) See Section Error-driven Online Training.

Uniform (U) Examples are sampled u.a.r. from search trees.
All-Pairs(A) All positive and negative pairs

Loss Function

Ranking MIRA (Mr) See Section Ranking MIRA.
Non-Ranking Mira (Mc) MIRA trained for classification, not ranking.
Ranking Perceptron (Pr) See Section Ranking Perceptron.

Non-Ranking Perceptron (Pc) Perceptron for classification, not ranking.
Logistic Regression(L) Standard Logistic Regression.

Table 3: Description of the various system components used in the experiments.

Pairwise B-Cubed MUC
F1 Precision Recall F1 Precision Recall F1 Precision Recall

C/E/Mr 36.0 96.0 22.1 48.8 97.9 32.5 79.8 99.2 66.8
C/E/Mc 24.4 99.2 13.9 35.8 98.7 21.8 71.2 98.3 55.8
C/E/Pr 52.0 77.9 39.0 63.8 84.1 51.4 88.6 94.5 83.4
C/E/Pc 40.3 99.9 25.3 52.6 99.6 35.7 81.5 99.6 68.9
C/U /L 36.2 74.8 23.9 46.1 80.6 32.2 80.4 89.6 73.0
P /A/L 44.9 96.8 29.3 56.0 95.0 39.7 87.2 96.4 79.5

Table 4: Author Coreference results on the Penn data. See Table 3 for the definitions of each system.

be below the classification threshold, the resulting cluster-
ing algorithm can over-merge authors. MIRA’s additional
constraint (S(N̂ , Λ) < τ) addresses this issue.

In conclusion, these results indicate that simply increas-
ing representational power by using a clusterwise scoring
function may not result in improved performance unless ap-
propriate parameter estimation methods are used. The ex-
periments on these three datasets suggest that error-driven,
rank-based estimation is an effective method to train a clus-
terwise scoring function.

Related Work
There has been a considerable interest in the problem of au-
thor disambiguation (Etzioni et al. 2004; Dong et al. 2004;
Han et al. 2004; Torvik et al. 2005; Kanani, McCallum, &
Pal 2007); most approaches perform pairwise classification
followed by clustering. Han, Zha, & Giles (2005) use spec-
tral clustering to partition the data. More recently, Huang,
Ertekin, & Giles (2006) use SVM to learn similarity metric,
along with a version of the DBScan clustering algorithm.
Unfortunately, we are unable to perform a fair comparison
with their method as the data is not yet publicly unavailable.
On et al. (2005) present a comparative study using co-author
and string similarity features. Bhattacharya & Getoor (2006)
show suprisingly good results using unsupervised learning.

There has also been a recent interest in training meth-
ods that enable the use of global scoring functions. Per-
haps the most related is “learning as search optimization”
(LaSO) (Daumé III & Marcu 2005). Like the current pa-
per, LaSO is also an error-driven training method that inte-
grates prediction and training. However, whereas we explic-
itly use a ranking-based loss function, LaSO uses a binary
classification loss function that labels each candidate struc-

ture as correct or incorrect. Thus, each LaSO training exam-
ple contains all candidate predictions, whereas our training
examples contain only the highest scoring incorrect predic-
tion and the highest scoring correct prediction. Our experi-
ments show the advantages of this ranking-based loss func-
tion. Additionally, we provide an empirical study to quantify
the effects of different example generation and loss function
decisions.

Conclusions and Future Work

We have proposed a more flexible representation for author
disambiguation models and described parameter estimation
methods tailored for this new representation. We have per-
formed empirical analysis of these methods on three real-
world datasets, and the experiments support our claims that
error-driven, rank-based training of the new representation
can improve accuracy. In future work, we plan to investigate
more sophisticated prediction algorithms that alleviate the
greediness of local search, and also consider representations
using features over entire clusterings.

Acknowledgements
This work was supported in part by the Defense Advanced Re-
search Projects Agency (DARPA), through the Department of
the Interior, NBC, Acquisition Services Division, under con-
tract #NBCHD030010, in part by U.S. Government contract
#NBCH040171 through a subcontract with BBNT Solutions LLC,
in part by The Central Intelligence Agency, the National Security
Agency and National Science Foundation under NSF grant #IIS-
0326249, in part by Microsoft Live Labs, and in part by the De-
fense Advanced Research Projects Agency (DARPA) under con-
tract #HR0011-06-C-0023.0

36

Pairwise B-Cubed MUC
F1 Precision Recall F1 Precision Recall F1 Precision Recall

C/E/Mr 74.1 86.3 65.0 78.0 94.6 66.4 82.7 98.0 71. 5
C/E/Mc 39.4 98.1 24.7 59.3 96.6 42.8 72.7 96.7 58.2
C/E/Pr 86.4 87.4 85.5 81.8 81.6 82.0 88.8 87.4 90.2
C/E/Pc 49.5 87.2 34.5 65.8 94.6 50.4 78.3 96.2 66.0
C/U /L 45.0 87.3 30.3 67.2 86.9 54.8 82.0 87.8 76.4
P /A/L 66.2 72.4 61.0 75.7 75.5 76.0 88.6 85.3 92.2

Table 5: Author Coreference results on the Rexa data. See Table 3 for the definitions of each system.

Pairwise B-Cubed MUC
F1 Precision Recall F1 Precision Recall F1 Precision Recall

C/E/Mr 92.2 94.2 90.2 89.0 94.4 84.2 93.5 98.5 89.0
C/E/Mc 91.9 90.6 93.2 87.6 94.8 81.5 90.7 98.5 84.1
C/E/Pr 45.3 29.4 99.4 72.9 57.8 98.8 94.2 89.3 99.6
C/E/Pc 93.1 91.0 95.3 90.6 92.0 89.3 94.3 97.2 91.6
C/U /L 82.4 95.7 72.3 83.2 93.0 75.3 93.1 96.2 90.3
P /A/L 88.0 84.6 91.7 86.1 84.6 87.8 93.0 93.0 93.0

Table 6: Author Coreference results on the DBLP data. See Table 3 for the definitions of each system.

References
Amit, B., and Baldwin, B. 1998. Algorithms for scoring corefer-
ence chains. In Proceedings of MUC7.
Bhattacharya, I., and Getoor, L. 2006. A latent dirichlet model
for unsupervised entity resolution. In SDM.
Censor, Y., and Zenios, S. 1997. Parallel optimization: theory,
algorithms, and applications. Oxford University Press.
Crammer, K., and Singer, Y. 2003. Ultraconservative online al-
gorithms for multiclass problems. JMLR 3:951–991.
Daumé III, H., and Marcu, D. 2005. Learning as search opti-
mization: Approximate large margin methods for structured pre-
diction. In ICML.
Dong, X.; Halevy, A. Y.; Nemes, E.; Sigurdsson, S. B.; and
Domingos, P. 2004. Semex: Toward on-the-fly personal infor-
mation integration. In IIWEB.
Etzioni, O.; Cafarella, M.; Downey, D.; Kok, S.; Popescu, A.;
Shaked, T.; Soderland, S.; Weld, D.; and Yates, A. 2004. Web-
scale information extraction in KnowItAll. In WWW. ACM.
Freund, Y., and Schapire, R. E. 1999. Large margin classification
using the perceptron algorithm. Machine Learning 37(3):277–
296.
Han, H.; Giles, L.; Zha, H.; Li, C.; and Tsioutsiouliklis, K. 2004.
Two supervised learning approaches for name disambiguation in
author citations. In JCDL, 296–305. ACM Press.
Han, H.; Zha, H.; and Giles, L. 2005. Name disambiguation
in author citations using a k-way spectral clustering method. In
JCDL.
Huang, J.; Ertekin, S.; and Giles, C. L. 2006. Efficient name
disambiguation for large-scale databases. In PKDD, 536–544.
Kanani, P.; McCallum, A.; and Pal, C. 2007. Improving author
coreference by resource-bounded information gathering from the
web. In Proceedings of IJCAI.
On, B.-W.; Lee, D.; Kang, J.; and Mitra, P. 2005. Comparative
study of name disambiguation problem using a scalable blocking-
based framework. In JCDL, 344–353. New York, NY, USA: ACM
Press.

Torvik, V. I.; Weeber, M.; Swanson, D. R.; and Smalheiser, N. R.
2005. A probabilistic similarity metric for medline records: A
model for author name disambiguation. Journal of the American
Society for Information Science and Technology 56(2):140–158.
Vilain, M.; Burger, J.; Aberdeen, J.; Connolly, D.; and
Hirschman, L. 1995. A model-theoretic coreference scoring
scheme. In Proceedings of MUC6, 45–52.

37

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 1
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

