
Solving POMDPs from Both Sides: Growing Dual Parsimonious Bounds

Nicholas Armstrong-Crews
Robotics Institute

Carnegie Mellon University
5000 Forbes Avenue
Pittsburgh, PA 15213

Geoffrey Gordon
Machine Learning Dept.

Carnegie Mellon University
5000 Forbes Avenue
Pittsburgh, PA 15213

Manuela Veloso
Computer Science Dept.

Carnegie Mellon University
5000 Forbes Avenue
Pittsburgh, PA 15213

Abstract

Partially Observable Markov Decision Processes, or
POMDPs, are useful for representing a variety of decision
problems; unfortunately, solving for an optimal policy is
computational intractable in general. In this paper, we
present a set of novel search techniques for solving POMDPs
approximately. We build on previous heuristic search and
point-based algorithms, but improve upon them in several
ways: we introduce an efficient method for approximating
the convex hull of the upper bound, we expose embedded
finite Markov structure in each bound, and we show how
to prune aggressively while still maintaining convergence.
The net result is a more targeted growth of the bound
representations, leading to lower overall runtime and storage.
We synthesize these contributions into a novel algorithm,
which we call AAA-POMDP (Appropriately Acronymmed
Algorithm). We describe its theoretical properties, including
computational efficiency, and examine its performance on on
standard benchmark problems from the literature. On these
problems, our algorithms exhibit competitive or superior
performance when compared to previous methods.

Partially Observable Markov Decision Processes (POMDPs)
provide an elegant and general framework for representing
decision problems with uncertain state and action outcomes
(Sondik 1971) (Kaelbling, Littman, and Cassandra 1998),
but unfortunately finding optimal (or ε-optimal) policies is
computationally intractable, in general (Papadimitriou and
Tsisiklis 1987). Recent advances have relied on using a fi-
nite set of belief points and expanding that set during the
search (Pineau, Gordon, and Thrun 2003) (Smith and Sim-
mons 2004) (Ji et al. 2007) (Spaan and Vlassis 2005). This
approach helps in two ways: it reduces the beliefs consid-
ered from a continuous set to a finite set, a more computa-
tionally manageable task; and it provides intelligent heuris-
tics to focus the policy search.

Historically, POMDP solvers have maintained a set of
hyperplanes whose convex hull is a lower bound for the
value function. These algorithms add new hyperplanes via
Bellman backups and prune unnecessary hyperplanes. The
lower-bounding value of a belief is its projection onto the
lower-bounding convex hull, which can be computed effi-
ciently by maximizing over its projection onto each hyper-

Copyright c© 2008, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

plane (a dot product calculation). HSVI (Smith and Sim-
mons 2004) also maintains an upper bound, represented as
the convex hull of a set of points; it adds new points by
looking ahead via action and observation heuristics. The
upper-bounding value of a belief is its projection onto the
upper-bounding convex hull. Unfortunately, this value can-
not be computed efficiently for non-vertices (it requires solv-
ing a linear program), which is especially problematic since
nearly all HSVI subroutines rely on computing this value.
HSVI2 uses a faster but less tight approximation to the
upper-bounding convex hull.

POMDP policy iteration (Sondik 1971) (Hansen 1998) (Ji
et al. 2007) is an alternative to performing Bellman backups
on hyperplanes. It represents a policy as a finite-state con-
troller (FSC); for a given initial controller state and POMDP
world state, the FSC induces a Markov chain whose value
can be computed efficiently. The algorithm proceeds by
evaluating the chains for each controller state and world
state, adding new controller states that will result in im-
proved values, and pruning old controller states that have
no predecessors. There are two aspects of this algorithm
that chafe. Firstly, controller states are not modified once
they’ve been added, even if it becomes clear that a different
action would be optimal; instead, the algorithm waits un-
til new states are added that allow pruning of the old state.
Secondly, the algorithm only prunes controller states when
it can guarantee that doing so will not reduce the value func-
tion anywhere, even if the the reduction would only occur in
a non-reachable portion of the belief space.

Our contributions in this paper are threefold:

1. We present a novel method of maintaining the upper
bound — to our knowledge, the first efficient, convergent
point-based method to do so. By doing so, we address
the inefficiency of maintaining an upper bound (the same
issue that afflicts HSVI).

2. We show that POMDP policy iteration is in fact solving
a finite-state MDP in a restricted policy class. We show
how to construct the MDPs, for both upper and lower
bounds, and how to solve them efficiently. This technique
addresses the first stated problem with policy iteration.

3. We propose an improved pruning criterion that prunes
more aggressively but still guarantees convergence,
thereby solving the second stated problem with policy it-

7

eration.

We unify these contributions as a new POMDP solver, the
AAA-POMDP (Appropriately Acronymmed Algorithm).
AAA maintains upper and lower bounds on the value func-
tion while quickly converging to a value function whose rep-
resentation uses little space (a “parsimonious” representa-
tion). We examine the algorithm’s performance on several
benchmark problems from the literature. In comparison to
previous point-based schemes, we find AAA’s performance
to be competitive or superior.

Background
The MDP
The Markov Decision Process, or MDP, is a framework
for modeling an agent moving stochastically among a fi-
nite set of states via probabilistic transitions influenced by
the agent’s choice of actions. The agent’s next state is only
dependent upon its previous state and its current choice of
action. The agent receives a reward signal at each timestep,
associated with the current state and action. In this paper, we
consider the case of discounted reward and infinite horizon.
The tuple (γ,S,A, T ,R) specifies the MDP: γ is the scalar
discount factor; S is the set of all states in the world;A is the
set of all possible actions; T : S × A 7→ Π(S) is the state
transition function, written T (s, a, s′) for the transition s to
s′; andR : S ×A 7→ < is the (immediate) reward function.

The objective of the agent is to maximize long-term ex-
pected reward E[

∑∞
0 γtrt], where rt is the immediate re-

ward at time t associated with state st and action at at time
t. The agent maximizes this expectation by determining a
stationary policy π : S 7→ A that completely determines
the agent’s behavior. The optimal policy can be generated
by, for each state s, greedily choosing the action that max-
imizes J(s), the long-term expected reward for s assuming
the agent acts optimally (also called the value function and
often denoted V).

The POMDP
The Partially Observable Markov Decision Process, or
POMDP, extends the MDP framework to allow for incom-
plete knowledge of state. The agent now receives observa-
tions that are generated stochastically from a set of possi-
ble observations at each state. Rather than true state, the
agent maintains in memory a belief state, which consists of
a discrete probability distribution over states and is a suffi-
cient statistic for its history to act optimally in the future.
The POMDP is then Markovian in belief state, since all the
agent requires to model the transition to next belief state
is its current belief state and its action. The tuple for a
POMDP, (γ,S,A, T ,R,Ω,O), contains the same elements
as an MDP, plus: Ω, the set of all possible observations; and
O : S ×A 7→ Π(Ω), the observation function.

The agent still wishes to maximize long-term expected
reward, and can do so by computing a stationary policy
π : ∆ 7→ A, where ∆ is the probability simplex Π(S).
An optimal policy induces an optimal value function, which
should satisfy Bellman’s Equation for POMDPs (1):

J(b) ≡ max
a

(
R(·, a)T b+

∑
o

Pr(o|a, b)J(boa)

)
(1)

where

Pr(o|a, b) =
∑

s

b(s)Pr(o|a, s)

= Oo
aT

T
a b.

Here we use bold capitals as a shorthand for the matri-
ces representing the POMDP tuple functions; subscripts and
superscripts indicate indexes in the proper dimensions.

One challenge in finding the optimal value function is that
Equation (1) has as its domain the continuous belief simplex
∆. It turns out that the value function is piecewise linear and
convex for a finite horizon, and can be approximated to arbi-
trary precision by a piecewise linear and convex function in
the infinite horizon. Such a function is typically represented
as the max over a set of hyperplanes: J(b) = maxα∈Γ b

Tα.
Most solution algorithms attempt to maintain a parsimo-

nious set Γ (one that contains relatively few vectors to rep-
resent the value function), in the interest of computational
efficiency. Heuristic search (Smith and Simmons 2004), ex-
act value iteration (Sondik 1971), randomization (Spaan and
Vlassis 2005), and linear programming (Littman) have been
applied with some success. Methods for belief compression,
both lossy (Roy and Gordon 2002) and lossless (Poupart and
Boutilier 2003), have been shown effective in reducing the
problem size when an appropriate compression scheme is
known.

Our Approach
First, we describe how we maintain bounds and perform
backups. Next, we discuss the embedded finite Markov
structure of the bound representations and how we can use
it to speed up our search. Finally, we present our pruning
methodology and show that it still converges while pruning
more aggressively and thus maintaining a smaller represen-
tation.

Maintaining Bounds
We maintain the lower bound as a set of vectors α ∈ Γ. The
value of a belief b using the lower bound is given by:

J(b) = max
α∈Γ

bTα (2)

This is the standard represenation and is quick to compute,
taking O(|Γ||S|) time.

We maintain the upper bound as a set of points and their
values: (b, z) ∈ (B,Z). As an upper bound, we have
J(b) ≤ z for b ∈ B; and since we know the value func-
tion is convex, we can define the value function at the rest
of the beliefs in the simplex b′ ∈ ∆ as the convex hull of
(b, z) ∈ (B,Z). Evaluating a new belief is a computation-
ally intensive task, equivalent to projecting onto the convex

8

hull of (B,Z), or solving the linear program (LP):

J̄(b) = min
w

zT w (3)

subject to :

Bw = b∑
i

wi = 1

wi ≥ 0 ∀ i

We can break the projection into two steps:

1. Choose the vertices defining the face. A set of |S| points
(b, z) ∈ (Bf , Zf) defines a face (at most — less for
degenerate faces). This set must encompass b; in other
words, b must lie in its convex hull. Any set of points that
encompasses b will induce a valid upper bound, though
not necessarily the optimal one.

2. Calculate the projection onto the face. The equation of
the hyperplane defining the face can be calculated by solv-
ing the linear system Bf ᾱ = Zf .

We can find the equation of the face by performing the
Moore-Penrose pseudo-inverse on the matrix of beliefs that
defines the face’s vertices:

w = B+
f b = (BT

f Bf)−1BT
f b (4)

We must still maintain that w be nonnegative. Our fi-
nal equation for the upper bound, given a choice of vertices
(Bf , Zf), is then:

J̄(b) = ZT
f B+

f b, (5)

which is a valid upper bound only when B+
f b � 0.

The Sharktooth Approximate Convex Hull
We can group terms in Equation (5) as ZT

f (B+
f b) = ZT

f w to
retrieve our original LP. However, if we group the terms as
(ZT

f B+
f)b, then we produce an equation linear in b:

J̄(b) = ᾱT b (6)

In the lower bound, we’ve described expressions of this
form as α-vectors — indeed, that is precisely what we have
now for the upper bound! Viewed another way, Equa-
tion (6) describes the dual of the upper bound LP: the mini-
mal bounding hyperplane at b. As long as our restriction of
w � 0 holds, we can use ᾱ to evaluate beliefs efficiently,
avoiding the need to solve the full LP. While computing ᾱ is
still somewhat expensive, since it requires computing B+

f ,
we can use it to quickly evaluate many beliefs thereafter.

In other words, our basic strategy to reduce computa-
tion for evaluating the upper bound is to cache a set of
faces F , each face f ∈ F stored with its relevant proper-
ties: (Bf ,Zf ,mathbfB

+
f , ᾱf ,). Since the number of faces

grows as |B| choose |S|, but we might never use many of
these faces, we maintain only a small set F . The remainder
of this section is concerned with how we store, update, and
use this set.

Evaluating a Belief To evaluate a belief b, we find the sub-
set of qualified faces FQ ⊆ F satisfying our w � 0 restric-
tion. This restriction is equivalent to requiring that the face
contain the belief. We can then use the face that is minimal
at b, and the belief’s value is that minimum.

The matrix multiplication to obtain w is O(|S|2). Evalu-
ating the value of b on that face only requiresO(|S|). Hence,
it is wise to quickly eliminate faces that could not be valid
at b, then minimize over the remaining faces. In general,
any points that lie outside a simplex’s circumsphere also lie
outside the simplex. In higher dimensions the circumsphere
becomes far too conservative, so we also test if the point
lies outside the bounding box. Each of these tests requires
O(|S|) computation, so faces they eliminate from consider-
ation are a computational gain.

Alternatively, we could structure the search for containing
faces as a KD-tree, reducing the set of potential containing
faces at each branch; but for simplicity in implementation,
we did not do so in this paper.

HSVI2 (Smith and Simmons 2005) uses a similar strat-
egy to that we’ve described to approximate the convex hull:
the so-called “sawtooth” approximation. It generates a set of
valid faces characterized by taking all but one of the simplex
corners and one of the interior belief points. For each inte-
rior belief, it is trivial to see which simplex corners are also
needed in the face to contain b. Hence, it makes |B| − |S|
faces, since B can always be partitioned into |S| corner be-
liefs and |B| − |S| interior beliefs. Computing each face
can be viewed as a single rank-one update to the inverse of
Bf , which is, in this case, the identity. A rank-one update is
computed in O(|S|2) with the Sherman-Morris formula:

u = I(i ?= k)
v = b− b′(

Bf + uvT
)+

= B+
f

B+
f uv

T B+
f

1 + vT B+
f u

,

where u is a column vector whose entries are zeros except
for row k, b′ is the belief to be removed (the k’th belief in
Bf), and b is the point to be added. In the case of the saw-
tooth approximation, B+

f is the identity, so the total cost is
then O(|B||S|).

This practice begs the question: why a single rank-one
update? Furthermore, the faces are reconstructed at each
iteration. We introduce a generalized version of sawtooth,
which we call the “sharktooth” approximation, that remem-
bers the previous face and updates that face by rank-one
updates. The name is in analogy with “sawtooth,” and is
characterized by multiple overlapping faces or “teeth.” The
distinction is depicted in Figure 1. In essence, the teeth are
cached faces, preserved from previous iterations. The net re-
sult is that we interleave iterations of solving for the convex
hull with belief expansion and value iteration steps, better
targeting the faces whose convex hull influences the value
function and policy. After a single update, the sharktooth
and sawtooth bounds are identical; additional updates im-
prove sharktooth further, converging to the true convex hull
in the limit.

9

0 0.2 0.4 0.6 0.8 1
0

2

4

6

8

10

12

14

16

(a) Sawtooth

0 0.2 0.4 0.6 0.8 1
0

2

4

6

8

10

12

14

16

(b) Sharktooth

Figure 1: The sawtooth (left) and sharktooth (right) approx-
imations to the convex hull. Ignoring the near-vertical faces,
which are artifacts of MATLAB plotting, one can see that
the sharktooth approximation is tighter and uses less faces.

Algorithm 1 f = CHOOSEFACESHARKTOOTH(b, F)
1: Find qualified faces FQ ⊆ F that contain b in their

bounding box and circumsphere.
2: Find valid faces FV ⊆ FQ that contain b: {f ∈ FQ|w =

B+
f b � 0}.

3: Choose the minimal f ← arg minf∈FV
αT

f b

Improving Bounds
Let’s say we’d like to improve our bounds at some point
b, for which we’ve already computed an updated value z.
In the lower bound, we simply perform a point-based vec-
tor backup, given in Algorithm 2. In the upper bound, we
wish to add new faces or improve on prior faces. Adding
new faces is described in the next section on performing
backups; we now describe how to improve our prior faces
in F . We can do what is essentially an iteration of the re-
vised simplex method. For a face f witnessed by a point
bf , we consider swapping a vertex in (Bf , Zf) for a point in
(B,Z). Here we mean (B,Z) after including the new point
(b, z); we must include old points as candidates because we
run only a single iteration to improve the sharktooth bound,
rather than iterating until it converges to the convex hull.
We can compute in O(|S|) time whether this swap is fea-
sible and would improve the value of b. If so, we perform
the swap and compute the new hyperplane ᾱ via a rank-one
update.

Performing this improvement step for each face would re-
quire O(|B| (|S|2 + |F ||S|)) time.

Point-based Backups
There are two basic steps in performing a backup (for either
the upper or lower bound): 1) choose the successor faces
for all actions and observations; and 2) evaluate Bellman’s
equation using those faces. It is clear that we can back up a
point in this fashion; and since fixing the action and succes-
sor elements in Bellman’s equation makes it linear in b, we
can back up a vector similarly.

Point-based algorithms back up vectors (in the lower
bound) by using successor faces that are maximal at bao . We
also back up vectors in the upper bound, by choosing suc-
cessor faces with CHOOSEFACESHARKTOOTH.

Algorithm 2 α = POINTBASEDVECTORBACKUP(b,Γ)
1: f(a, o)← CHOOSEFACE(bao)
2: βo

a ← Γf(a,o)

3: βa ← Ra + γ
∑

o TaDo
aβ

o
a

4: J(b)← maxa β
T
a b

5: α← arg maxa β
T
a b

a1

o1

w111

w113

w112

Figure 2: An “overhead” view of the Upper Bound MDP
for a 3-state POMDP, looking down the value function axis.
MDP states are vertices of the convex hull, shown here as
circles. Faces of the convex hull are shown as sub-triangles
of the triangular simplex. Action a1 results in beliefs that lie
outside our set B; the transitions w move us back onto B.

The method for point-based vector backups is summa-
rized in Algorithm 2. Note that it applies to both up-
per and lower bounds; in line 1, CHOOSEFACE means
CHOOSEFACESHARKTOOTH for the upper bound, while for
the lower bound it indicates the maximal vector at b.

Embedded Markov Structure
Upper Bound MDP Substituting Equation (5) into the
right-hand size of Equation (1), and expanding boa, we get:

J̄(b) = max
a

bT

(
Ra + γ

∑
o

TaDo
aB

+T
f(a,o)Zf(a,o)

)
,

(7)
where f(a, o) is the index of the face that is maximal for boa
and Do

a is shorthand for DIAG(Oo
a).

Recalling that (B,Z) is a finite set, it is easy to see that
the above equation defines a finite-state MDP, with: B as
the set of states; BT Ra as the reward vector for action a;
and TaDo

aB
+T
f(a,o) for the transition matrix. This transition

matrix can be interpreted as a state transition, as in a normal
MDP; followed by an observation, modifying belief state as
in the belief MDP; and finally, a “bonus” observation, mov-
ing boa to a face vertex i with probability wi. 1 This final step
ensures that transitions are made on the closed set B.

A POMDP over a finite set of states can be reduced to a
continuous MDP in belief state. Hence, it is not surprising

1The “bonus observation” description is merely an intuitive in-
terpretation of the MDP transition matrix, not an explicit mecha-
nism of the system.

10

that considering a finite subset of the belief points yields a
discrete MDP.

Performing backups, as in HSVI, solves this MDP implic-
itly by value iteration (each backup is one step of value iter-
ation at one point); however, it does not solve it to conver-
gence. Instead, we explicitly perform value iteration steps
to convergence with a fixed set (B,Z). While this method
is more expensive computationally, it will give us better im-
provements in the upper bound for fewer points. Further-
more, we expect the values to change little when we add
new points, so we seed value iteration with the previous val-
ues Z, and convergence is typically quite fast.

Lower Bound MDP Finite Markov structure was earlier
noted in policy iteration methods (Hansen 1998); given a
finite-state controller (FSC) representing a policy, Equa-
tion (1) defines a Markov chain over S × Γ, where S is the
original state space and Γ comprises the states of the FSC.

It is also the case that in an MDP, fixing a policy yields
a Markov chain. It is a natural step to try to “upgrade” the
chain to an MDP by allowing actions to vary during the so-
lution. However, if we allow action selection at each state
in S × Γ, we are essentially allowing knowledge of the un-
derlying system state s ∈ S. Instead, we must restrict our
policy class to a single action across all s ∈ S for a fixed
α ∈ Γ. We do so by using a representative belief point for
each vector — specifically, the point used to generate the
vector from POINTBASEDVECTORBACKUP — to select the
action for the vector. We interleave this policy improvement
step with a policy evaluation step, performed by value itera-
tion. Iterating the two steps together yields a policy iteration
algorithm, but one that is different from prior work (Hansen
1998) because it solves for a policy of fixed size. It is not
guaranteed to improve policy values at each iteration, but
overall we find that it gives a better policy than not iterating.
Since this is a subroutine producing Γ′, we achieve mono-
tonicity in the policy by integrating it into our prior policy:
Γ← MERGE(Γ,Γ′). The MERGE procedure is described in
prior work on policy iteration (Hansen 1998) (Ji et al. 2007).

Finally, we prune any vectors (and their associated con-
troller states) that are not witnessed by any belief that we’ve
visited before (in EXPLORE), or will visit in the next step⋃

a,o{boa}. This last step allows pruning of Γ′, something
prior policy iteration algorithms could not do, while still
guaranteeing convergence (see theoretical results in Sec-
tion). Note that we expect this policy iteration to converge
quickly, since we seed it with the prior policy Γ; similarly,
we expect policy evaluation via value iteration to converge
quickly, since we seed it with the value of the representative
belief for each vector bTα.

Pruning
“Pruning” refers to removing unnecessary points or vectors
(faces) from our bounds. We say a vector α is unnecessary
if it has no witness point b such that α · b = J(b) (otherwise,
we say b witnesses α); we say a point (b, z) is unnecessary if
it is not a vertex of the convex hull. Most algorithms prune
conservatively, requiring that the pruning does not loosen the
bounds nor invalidate them at any b ∈ ∆. In other words,

these algorithms guarantee monotonicity and validity. An
exception is PBVI, which prunes (implicitly) all vectors not
witnessed by some b ∈ B. This practice does not guaran-
tee monotonicity, not even for b ∈ B (Pineau, Gordon, and
Thrun 2003).

We adopt an approach not as aggressive as PBVI nor as
conservative as other algorithms: specifically, we prune vec-
tors (faces) that are not witnessed by any belief we’ve pre-
viously visited nor might visit with one step of lookahead.
We argue this pruning operation is one-step monotone, in
the sense that it will loosen the bounds at no previously ex-
amined belief nor any to be examined in the next round of
backups. Since we will perform a backup to add new vectors
at the next iteration of the algorithm, the pruning operation
must be one-step monotone to guarantee that our backed-up
values won’t result in loosened bounds at b ∈ B.

Points in the upper bound are implicitly pruned as a result
of pruning faces; since we construct the set of vertices as⋃

f (Bf , Zf), a vertex will no longer appear in this set if all
faces it supports are removed.

Where to Improve
A backup could be performed at any arbitrary b ∈ ∆ (or at
all of them simultaneously, as in a full functional backup).
However, techniques for partial backups based on heuris-
tic lookahead have seen great success. As such, we adopt
HSVI’s lookahead heuristics; namely, we choose to descend
the search path with: 1) the action whose value is maximal
in the upper bound, and 2) the observation that contributes
most to the bound width at b. We stop exploring when the
discounted bound width is below ε. The complete AAA al-
gorithm is listed as Algorithm 4.

Algorithm 3 (B′, Z ′) = EXPLORE(b, ε, t)
1: if J̄(b)− J(b) ≥ εγ−t then
2: a∗ ← arg maxa Q̄(b, a)
3: o∗ ← arg maxo Pr(o|b, a)ψ(boa)
4: (B′, Z ′)← EXPLORE(boa, ε, t+ 1)
5: (B′, Z ′)← (B′, Z ′)

⋃
{b, Q̄(b, a∗)}

6: end if

Algorithm 4 AAA(F,Γ)
1: Initialize Γ by evaluating any initial policy.
2: Initialize F with a single face, consisting of the simplex

corners and the corresponding MDP value for that state.
3: while J̄(b0)− J(b0) > ε do
4: (B′, z′)← EXPLORE(b0, ε, 0)
5: (F,Γ)← IMPROVEBOUNDS(B′, z′)
6: (F,Γ′)← SOLVEEMBEDDEDMDPS(F,Γ)
7: Γ← MERGE(Γ,Γ′)
8: (F,Γ)← PRUNE(F,Γ)
9: end while

Convergence
We now summarize theoretical results regarding conver-
gence and runtime.

11

Lemma 1. EXPLORE is monotone, in the sense that visiting
a belief point b at iteration t1 and t2 > t1 implies J̄ t1(b) ≥
J̄ t2(b) and J t1(b) ≤ J t2(b).

The following results two are inherited from HSVI (Smith
and Simmons 2004), since we use its search strategy and
lookahead heuristics.

Lemma 2. The search tree for EXPLORE(b0, ε, 0) has finite

depth: tmax =
⌈
logγ

ε
||J̄0−J0||∞

⌉
.

Theorem 3. Both J̄ and J converge to within ε of the opti-
mal value function, within O(tmax (|A||O|)tmax) time.

While we inherit the worst-case number of iterations of
HSVI, each iteration is faster (not requiring solving LPs di-
rectly). Furthermore, empirically the policy evaluation step
improves results dramatically, especially for very small ε (Ji
et al. 2007).

Theorem 4. The size of the representation is
bounded quadratically in tmax; both |Γ| and |F | are
O(|S||A||O| (t2max + |S|)).

Results
We now examine the performance of AAA on standard
POMDP benchmark problems from the literature.

We implemented our own versions of PBVI, PBPI, and
HSVI, since they share many of the same subroutines as our
method. Moreover, using common implementations of these
subroutines precludes implementation-specific differences,
thus allowing direct performance comparisons.

We implemented all code in MATLAB, vectorizing it
when possible but not painstakingly. All experiments were
run on a 3.4 GHz dual-core Pentium IV machine with 2GB
RAM. We ran each algorithm until it achieved empirical ac-
cumulated reward Ĵ(b0) (via 100 simulation episodes) was
within ε = 10−3 of the optimal value J(b0) (as given by the
converged bounds [J(b0), J̄(b0)] of AAA and HSVI).

Table 1: Results on Benchmark Problems
PBVI PBPI HSVI AAA

Maze (20s,6a,8o)
Runtime (s) 57 .49 50 .25
|Γ| 135 7 17 6
Hallway (57s,5a,21o)
Runtime (s) 324 163 3347 87
|Γ| 94 194 1252 51
Additionally, it is instructive to examine the tightness of

the bounds as the algorithms progress; although showing
through simulation that they have achieved a near-optimal
solution, the bounds constitute a proof that they are within
ε, a much stronger statement. In our experiments, PBVI and
PBPI’s bounds did not change from their initial values by
more than an order of magnitude (their bounds depend on
approaching the reachable belief space ∆̄ in the limit, and
in our experiments, we do not even come close to this lim-
iting case). Restricting our comparison to HSVI, then, we
find that AAA truly shines; in a given number of iterations,

it can achieve several orders of magnitude smaller bound
width than HSVI. The result is even better when we com-
pare using wallclock time, since AAA’s iterations are faster
than HSVI’s. For example, in the Hallway problem, HSVI
requires 3347 seconds to achieve a bound width of 10−2, af-
ter which time AAA has achieved a bound width of 10−6.
We ascribe the jump in performance to the fact that solv-
ing the MDP via many cheap MDP value iteration steps is
much faster than perfoming POMDP backups (and |A||O|
expensive belief evaluations for each backup).

Conclusions and Future Work
In this paper, we contribute an efficient method for maintain-
ing an approximate upper-bounding convex hull, a method
for identifying and solving MDPs in the upper and lower
bounds, and a pruning strategy that is efficient, aggressive,
and does not break convergence. Initial results on bench-
mark problems are encouraging, but more extensive exper-
iments would be desirable. Intelligent data structures (such
as KD-trees) and caching could speed up many processes, as
well as a C++ implementation. We envision a second imple-
mentation, not unlike HSVI2, which benefits from these and
other tricks. On the theoretical front, we plan to investigate
duality of the bounds in further detail.

References
Hansen, E. 1998. An improved policy iteration algorithm
for POMDPs. In Proceedings of NIPS-98.
Ji, S.; Parr, R.; Li, H.; Liao, X.; and Carin, L. 2007. Point-
based policy iteration.
Kaelbling, L. P.; Littman, M.; and Cassandra, A. 1998.
Planning and acting in partially observable stochastic do-
mains. Artificial Intelligence Journal 101(1-2):99–134.
Littman, M. The witness algorithm: Solving POMDPs.
Technical report.
Papadimitriou, C., and Tsisiklis, J. 1987. The complexity
of markov decision processes. Mathematics of Operations
Research 12(3):441–450.
Pineau, J.; Gordon, G.; and Thrun, S. 2003. Point-based
value iteration: An anytime algorithm for POMDPs. In
Proceedings of IJCAI-03.
Poupart, P., and Boutilier, C. 2003. Value-directed com-
pression of POMDPs. In Proceedings of NIPS-03.
Roy, N., and Gordon, G. 2002. Exp. family PCA for belief
compression in POMDPs. In Proceedings of NIPS-02.
Smith, T., and Simmons, R. 2004. Heuristic search value
iteration for POMDPs. In Proceedings of UAI-04.
Smith, T., and Simmons, R. 2005. Point-based POMDP al-
gorithms: Improved analysis and implementation. In Pro-
ceedings of UAI-05.
Sondik, E. 1971. The Optimal Control of Partially Observ-
able Markov Processes. Ph.D. Dissertation, Stanford.
Spaan, M., and Vlassis, N. 2005. Perseus: Randomized
point-based value iteration for POMDPs. Journal of Artifi-
cial Intelligence Research 24.

12

