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Abstract
Decentralized agent groups typically require complex mech-
anisms to accomplish coordinated tasks. In contrast, biologi-
cal systems can achieve intelligent group behaviors with each
agent performing simple sensing and actions. We summarize
our recent papers on a biologically-inspired control frame-
work for multi-agent tasks that is based on a simple and iter-
ative control law. We theoretically analyze important aspects
of this decentralized approach, such as the convergence and
scalability, and further demonstrate how this approach applies
to real-world applications with a diverse set of multi-agent
applications. These results provide a deeper understanding of
the contrast between centralized and decentralized algorithms
in multi-agent tasks and autonomous robot control.

Introduction
In this paper, we summarize our recent results on the devel-
opment of a bio-inspired control framework for multi-agent
tasks (Yu and Nagpal 2008; 2009). Our original inspiration
was the robust and scalable intelligent behavior of biological
groups, e.g., bird flocking, achieved through the distributed
actions of many independent agents. In these systems, each
agent acts autonomously and interacts only with its neigh-
bors, while the global system exhibits coordinated behav-
ior. Modern multi-agent systems, such as distributed robot
systems and sensor networks, are similar to these biological
systems in that their overall tasks are achieved by coordi-
nating independent agent actions. Inspired by this connec-
tion, we propose a decentralized framework for multi-agent
systems to achieve coordinated tasks in a scalable, robust
and analyzable manner. We summarize both theoretical and
practical contributions and discuss lessons learned from this
study. Based on our results, we can provide concrete state-
ments regarding the strengths, limitations, and scope of this
class of decentralized approaches and the manner in which
one can leverage their strengths to interface with other au-
tonomous control strategies in Artificial Intelligence.

Our framework addresses multi-agent self-adaptive tasks
in which agents utilize their distributed sensors and actu-
ators to autonomously solve tasks and cope with environ-
mental changes. We formulate this problem more generally
as distributed constraint maintenance on a networked agent
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Figure 1: Concept diagram. A node indicates an agent and
an edge indicates a neighborhood link. The global task is
specified by inter-agent relationships, and this method can
be used to describe tasks in many systems, e.g., modular
and swarm robots and sensor networks. Each agent itera-
tively senses and communicates with neighbors (A) and per-
forms actuation to change its state (B) until all agents’ local
constraints are satisfied and the desired state is reached (C).
When the system is perturbed, agents restart the process (D).

system such that it can capture various multi-agent tasks.
In our control algorithm, each agent aggregates information
from its neighbors and then uses this information to control
its state (Fig. 1). Because all agents act on local informa-
tion in parallel and can potentially affect each other, two key
issues are whether the whole system will converge to the
desired global state and what factors determine the conver-
gence rate.

We prove the convergence of this approach and show how
the convergence rate depends on (a) the number of agents
and agent topology, (b) the complexity of the task, and (c)
the initial state of the agents. Using these results, we can
provide precise statements on how the approach scales and
how quickly agents can adapt to perturbations. These results
provide a deeper understanding of the contrast between cen-
tralized and decentralized multi-agent algorithms. In addi-
tion to theoretical results, we summarize our work in apply-
ing this framework to modular robots, a type of robot that is
composed of many independent and interconnected modules
(agents), and other new application areas. We demonstrate
that our approach allows modules to cooperatively achieve
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various tasks, such as forming self-adaptive structures and
manipulators. We further describe how it applies to a wider
area of applications like modular robot locomotion, climb-
ing, and adaptive orthotics. In both theoretical and practical
aspects, we show that this decentralized approach outper-
forms centralized tree-based algorithms in dynamic environ-
ments. Our work can also serve as an example of translating
a biological concept into an effective algorithmic approach.

We describe the potential impact of this work in different
areas of AI. In multi-agent systems, an important question is
whether one should use a decentralized or a centralized ap-
proach. Using our results, we can compare the tradeoffs and
identify scenarios in which a decentralized method is advan-
tageous. In autonomous robot control, centralized planning
approaches are usually considered separately from decen-
tralized approaches. Our study contributes to a deeper un-
derstanding of the limitations and strengths of decentralized
approaches, and one can potentially combine this method
with a centralized planner and leverage strengths from both
approaches.

Multi-Agent Model
In our multi-agent model, the whole system is composed of
a network of agents, and the global task is described by inter-
agent constraints. Each agent iteratively senses the local en-
vironment, communicates with its neighbors, and performs
action until its local constraints are satisfied. The control law
that each agent executes is simple, while the emerging global
behaviors are sophisticated and robust. We now describe the
multi-agent model and the assumed agent capabilities:

Agent: An agent is defined as a unit that has independent
computation, communication, sensing, and actuation capa-
bilities, and we denote agent i as ai. We use a modular robot
bridge, illustrated in Fig. 2 (A), as an example: Each pillar
of the bridge has an independent computational unit, linear
actuation to change its height, and local communication ca-
pabilities; thus, it is an agent.

Coordination Graph: Agents have only a one-hop lo-
cal view, and they achieve global tasks by coordinating with
their immediate neighbors. We represent coordination as a
graphG in which the vertices represent agents and the edges
represent coordination between an agent and its neighbors.
A sample topology is illustrated in Fig. 1. The neighbor
relationship between agents is symmetric, so the edges in G
are undirected. The agent coordination graph of the modular
robot bridge is a grid graph (shown in the right-side diagram
of Fig. 2 (A)).

Task Specification: We assume that the global task can
be described as inter-agent states or sensory relationships.
For example, in Fig. 2 (A) there is a sensor measuring the
tilt relative to the ground between each pair of neighbor-
ing agents, and one example task for the robot bridge is to
maintain a level surface, which means that the task can be
specified by inter-agent sensory relationship: all tilt sensor
readings equal zero. This task specification scheme can be
viewed generally as a constraint-based specification. The
constraint between neighboring agents is satisfied when the
desired inter-agent relationship is reached. Such a task spec-
ification scheme can be applied in many multi-agent tasks

that use sensor-actuator networks as their underlying archi-
tectures, e.g., modular robot locomotion, sensor network
time synchronization, and multi-robot formation tasks.

Control Algorithm
Our approach is formulated as a process by which a network
of agents comes to a state of satisfied constraints by com-
municating only with neighbors. At each time step, each
agent iteratively updates its new state according to feedback
from its neighbors. Our approach is inspired by the biolog-
ical process of consensus decision-making using only local
interactions among decentralized animal groups (Couzin et
al. 2005). We generalize this concept, and the agent control
law can be formally written as:

xi(t+ 1) = xi(t) + α
∑
aj∈Ni

fj(·) (1)

where xi(t) denotes agent ai’s state at time t, Ni denotes
the set of ai’s neighbors, 0 < α < 1

|Ni| is a damping fac-
tor that determines the degree of reaction to each neighbor’s
feedback, and fj(·) represents the feedback function from
neighbor aj .

There are two forms of feedback functions:
• (i) fj(·) = xj(t)−xi(t)−∆∗ij , which addresses scenarios

in which the agent sensor and actuation states are the same
and ∆∗ij is the desired state difference between ai and aj

• (ii) fj(·) = g(θi, θj)−θ∗ij , which extends this control law
to a wider range of scenarios in which the agent sensor
and actuation states can be different. g(θi, θj) represents
feedback agent ai receives from aj , and θ∗ij is the desired
sensory difference between ai and aj .
In our terrain-adaptive bridge example, we use a feedback

function of form (ii): fj(·) = θij , where θij indicates the
tilt sensory reading between agent ai and aj and θ∗ij = 0
(because we want to achieve a level surface).

We outline three sufficient conditions for designing feed-
back function fj(·) that guarantee correctness of the control
law (all agents will complete the desired task). These con-
ditions can guide us in efficiently designing controllers for
various multi-agent systems that can be viewed as sensor-
actuator networks:

g(θi, θj)− θ∗ij = 0⇔ θj − θi = θ∗ij (2)

sign(xj(t)− xi(t)−∆∗ij) = sign(g(θi, θj)− θ∗ij) (3)

g(−θi,−θj) = −g(θi, θj) (4)

Intuitively, condition 1 (Eq. 2) means that g only “thinks”
that the system is solved when it actually “is” solved; condi-
tion 2 (Eq. 3) means that when not solved, each sensory
feedback g(θi, θj) at least points the agent in the correct
direction to satisfy the local constraint θ∗ij with a neigh-
boring agent aj ; and condition 3 (Eq. 4) means that g is
anti-symmetric. To utilize the proposed agent control law to
solve tasks on different systems, we must address the fol-
lowing challenge: we need to appropriately design the func-
tion g such that the above three conditions are satisfied. We
will show the convergence proof and various example ap-
plications in the following sections. We also note that both
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feedback functions (i) and (ii) for our agent control law pre-
sented here are linear functions. One interesting area for
future work is to extend this linear feedback form to more
generalized perception-action relationships.

Convergence Analysis
Our approach is decentralized with many agents acting on
local information in parallel. A key question that arises is
whether these local actions will always produce the desired
global state (convergence from all initial states). Further-
more, if the system will converge, what is the convergence
speed? The key point of our analysis is the aggregation of all
agent control laws as a linear dynamical system, which al-
lows us to study the emerging global behavior of all agents
by analyzing a single system. By leveraging results from
spectral graph theory and stochastic matrix properties, we
prove that the system will converge to the desired state for
arbitrary connected coordination graphs and goals. Here we
first show results for the control law with feedback function
(i) in static agent topologies.

We first aggregate all agent update equations to become
collective dynamics. LetX(t) = (x1(t), x2(t), · · · , xn(t))′.
Based on Eq. 1, we can write the collective dynamics of all
agents as:

X(t+ 1) = A ·X(t) + b̃ (5)
where A is an n × n matrix that models the agents’ inter-
action dynamics and b̃ is a bias vector that depends on the
task considered. If b̃ = ~0, this equation is equivalent to a
distributed consensus (DC) (Olfati-Saber, Fax, and Murray
2007). Our key result is that the inclusion of a nonzero bias
vector does not affect the convergence analysis, so the con-
vergence analysis of DC applies here as well. Let µ2(A) be
the second largest eigenvalue of A; we can then prove the
following theorem:
Theorem 1 (Convergence) Let X∗ be the desired state in
which the global task is completed. If agent graph G is con-
nected, the agents will converge to X∗ for all initial con-
ditions at an exponential rate µ2(A) and 0 ≤ µ2(A) < 1.

The error tolerance ε represents the fact that agents have
finite resolution in controlling their actuation and that some
level of inaccuracy must therefore be tolerated.

In the case of feedback function (ii), the generating matrix
and the biased vector become time varying (denoted as A(t)
and b̃(t), respectively). The collective dynamics are then:

X(t+ 1) = A(t) ·X(t)− b̃(t) (6)
To prove convergence, we use the property that the infi-
nite product of row stochastic and symmetric matrices (Wol-
fowitz 1963). In fact,A(t) is guaranteed to be row stochastic
and symmetric for all t if all of the conditions for g outlined
in Eq.2 – Eq.4 are satisfied. This allows us to prove conver-
gence for the control law with feedback function (ii):
Theorem 2 (Convergence) Let feedback function (ii),
fj(·), satisfy Eq.2 – Eq.4 and agent graph G be connected.
The agents will converge to X∗ for all initial conditions
with an exponential rate at least: µ∗2 = maxt µ2(A(t)).

Factors Affecting Performance
We now address three important questions: 1) Scalability
and impact of topology: How is the convergence time af-
fected by the number of agents and coordination graph struc-
ture? 2) Effect of tasks: How do different tasks affect the
convergence time? 3) Reactivity: How do the agents re-
act to perturbations from the desired state? Here, we show
analytical results that provide precise answers to these ques-
tions. We present analysis for feedback functions of type (i),
though the same procedure also applies to feedback func-
tions of type (ii).

Before proceeding to analysis, we first derive an inequal-
ity for the convergence time, which can be defined as the
number of iterations required to achieve the desired task
within a certain error tolerance. We define: (1) Y (t) =
‖X(t) − X∗‖, and (2) X(t) is ε−approximation of X∗ if
Y (t) < ε. We can derive the number of iterations required,
tmax, to achieve ε−approximation:

tmax ≤ logµ2(A)

(
ε

‖Y (0)‖

)
(7)

1) Scalability and impact of topology: We can see from
Ineq. 7 that the number of iterations required for conver-
gence, tmax, depends on µ2(A). We can further decompose
A = I − αL, where L is Laplacian matrix, and α is the
same damping factor in Eq. 1. The second eigenvalue of
L is the algebraic connectivity, which encodes how well the
graphs are connected. While algebraic connectivity has been
studied extensively in graph theory, its use in understanding
decentralized algorithms is relatively new. Using the con-
nection between A and L and results from (Mohar 1991),
we prove bounds on µ2(A) that describe how the algorithm
scales.

Theorem 3 (Scalability) Let D be the graph G’s diameter
and n be the number of agents. Then µ2(A) ≤ 1− 4α

n·D
This shows us how the worst-case convergence rate scales

with the number of agents and agent graph diameter. One
can also directly compute µ2(A) for a given topology, pro-
viding a more precise prediction of the convergence time.

2) Effect of tasks: As we can see from Ineq. 7, tmax

increases logarithmically with Y (0), which implies that the
convergence time changes slowly as the deviation Y (0) in-
creases. The following theorem indicates that if the agent
topology and initial states are known, we can calculate the
maximal number of iterations required to achieve any task.

Theorem 4 Assuming that the agents’ initial states are
known and C =

∑
i xi(0), the number of iterations required

to achieve ε−approximation for any task is at most:

tmax = dlogµ2(A)

(
ε√
2C

)
e

3) Reactivity: Another important question is how the sys-
tem reacts to perturbations. From Ineq. 7, we see that if
Y (0) is small, then only a few iterations will be needed to
achieve ε-approximation. In our analysis (Yu and Nagpal
2008), we varied the system size dramatically and discov-
ered that the system’s reactivity toward small perturbations
scale extremely well with the number of agents (only a few
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Figure 2: Many modular robot tasks can be solved with this framework, including formation of an adaptive structure (A-B),
pressure-adaptive grasping (C), locomotion (D), climbing (E), and forming adaptive orthotics (F). These systems can be viewed
more abstractly as sensor-actuator networks and their agent coordination graph topologies are shown on the right.

iterations are required) in both regular and irregular topolo-
gies. If the environment changes smoothly, large changes
will appear as small perturbations over time. This explains
why the algorithm performs particularly well at tasks that
require constant adaptation.

Relationships to a Broader Context of AI
Multi-agent Applications
Our approach is reactive and well-suited for tasks that re-
quire constant adaptation under dynamic conditions. Many
tasks that require agents to adapt their strategies based on
changing environments share this requirement. We now dis-
cuss how the above results can be applied to various exam-
ples of AI problems, some of which we have already demon-
strated.

Environmentally-Adaptive Structures: We assembled
modules to form a terrain-adaptive bridge and a self-
balancing table (Fig. 2 (A-B)). In these structures, each leg is
an agent, and there is a tilt sensor mounted between each pair
of neighboring agents. The coordination graphs are shown
to the right of the figures. The specified task is for each agent
to maintain zero tilt angles with respect to all of its neigh-
bors. Each agent iteratively uses its tilt sensor feedback to
control its state (leg length) by executing Eq. 1. Our results
show that agents can keep the bridge and table surfaces level,
even when the underlying terrain is constantly changing.

Adaptive Modular Gripper: When modules are equipped
with pressure sensors and motors, they can form a gripper
that can reconfigure itself to manipulate a fragile object us-
ing distributed sensing and actuation (Fig. 2 (C)). In this
task, each module is specified to maintain equal pressure on
its neighbors. Without predetermining the grasping posture,
the modules are able to collectively form a grasping con-
figuration that conforms to the shape of the object. When
the gripper is perturbed by an external force, its grasping

posture autonomously adapts to maintain the equal pressure
state, similar to how the human grasp adapts to sudden ex-
ternal impacts without careful contemplation. One future
application along this line is an adaptive orthotic that can
actuate and reconfigure its shape to apply the optimal force
to correct a patient’s gait (Fig. 2 (F)).

Adaptive Locomotion and Climbing: In the previous ex-
amples, modules were programmed to achieve a single self-
adaptive task. We extended this framework to solve locomo-
tion tasks with a sequence of self-adaptive tasks. In modular
tetrahedron rolling locomotion (Fig. 2 (D)), each locomotion
step is modeled as a pressure-adaptive task, and agents au-
tonomously start the next locomotion cycle as soon as inter-
agent pressure constraints are achieved. This allows the
robot to move adaptively on different slopes. This approach
can potentially be applied to various other autonomous lo-
comotion tasks, e.g., for a modular robot to achieve vertical
climbing (Fig. 2 (E)).

Experimental Results: We also conducted various experi-
ments to evaluate several different aspects of the multi-agent
control approach, including the following: (1) its capacity
to adapt to external perturbations as well as internal faults;
(2) how different initial conditions and different robot con-
figurations would affect the time required to complete the
desired tasks; and (3) scalability of the number of mod-
ules. Detailed experimental results are presented in (Yu and
Nagpal 2009), and here we show one set of experiments
that evaluate the modular gripper’s (Fig. 2 (C)) capability
to adapt to external perturbations. We define ε = Y (t)

Ymax
as

a ratio that measures how far agents are from the desired
state, where Ymax is the maximal possible perturbation. Fig.
3 shows ε vs. time as the gripper encounters four different
perturbations. We can see that ε decreases to less than 3%
after 50 − 70 iterations in each case. This result shows that
our decentralized control law can efficiently lead agents to
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Figure 3: We constantly perturb the gripper by applying
force. The robot is able to re-adapt after being perturbed.

recover from exogenous perturbations.
The robot hardware experiments and simulations we con-

ducted in (Yu and Nagpal 2009) can be summarized:
• The control law allows us to easily program agents to

achieve complex and correct global behaviors.
• This approach is inherently error-correcting and able to

accomplish tasks robustly even when agents are equipped
with noisy sensors and actuators.

• A diverse set of multi-agent applications can be abstractly
viewed as the same task and tackled with this framework.

• The theoretical results presented in the previous section
coincide with our empirical results, thereby validating our
assertion that the theories developed here can be used to
estimate real-world system performance.

Centralization vs. Decentralization
An important question in networked multi-agent systems is
whether one should use a decentralized approach, such as
the method described here in which agents iteratively com-
municate and react to arrive at a solution, or use a centralized
tree-based approach in which a root agent collects all of the
information from other agents. This question is relevant to
a wide range of multi-agent applications. Using our results,
we can describe the tradeoffs between these two approaches.

For the centralized approach, we assume that a root agent
collects all of the information from all agents using a span-
ning tree, computes a final state for every agent, and then
disseminates the results back to each agent. This incurs two
costs: (a) a communication cost for collecting/disseminating
information, and (b) a computation cost for the root node.
In most homogenous multi-agent systems, each agent has
fixed communication and computation power. For the kinds
of tasks considered here, communication is often a more
severe bottleneck: if an agent can only collect a constant
amount of information per unit time, then the time needed
to collect all agents’ states is O(n) (n: number of agents)
and not O(D) (D: diameter). This cost is paid for every
task, regardless of the distance between the initial and de-
sired states. This results in poor reactivity in the case of
small perturbations, where information must travel all of the
way to the root agent before the state can be resolved. In
contrast, the communication cost of the decentralized algo-
rithm is O(tmax), which depends on both the topology and
the distance from the goal. The relationship between topol-
ogy and performance is worse than in the centralized case in

some cases. However, if the distance from the goal is small,
e.g., a small perturbation or a slowly changing environment,
then the system reacts rapidly in only a few iterations, even
when n is large.

This suggests that while decentralized algorithms may
pay a significant start-up cost to achieve a steady state, they
are extremely reactive to perturbations. Thus, they are more
appropriate when the goal is to maintain constraints over
long periods of time under uncertain and changing condi-
tions, rather than to produce a solution once.

The decentralized strategy also allows these multi-agent
systems to be more robust because there is no single agent
that plays a critical role in the group task and that can con-
sequently become a potential point of failure for the system.
Instead, all agents play the same role and execute the same
control law. This allows one failed agent’s function to be
easily replaced by another agent. Because all agents interact
only with local neighbors, each failed agent tends to only
affect its local area. In (Yu 2010), we prove the robustness
properties of this approach in the face of communication
and actuation errors. Our results show that this approach
allows agents to achieve the desired task even if the com-
munication links between agents fail temporarily, provided
that the time-varying agent coordination graph satisfies the
periodically-connected definition. While encountering a sin-
gle agent actuation error, we prove that all other agents will
try to accommodate this failed agent such that the desired
task is still eventually achieved.

Centralized Planning vs. Decentralized Control
While the type of decentralized approaches presented here
can scale to a vast number of agents, the task representa-
tion scope is usually more constrained than that of central-
ized planners, which can potentially express a wider range
of tasks across a longer time horizon. In contrast, the main
limitation to centralized planning is its scalability in degrees
of freedom, e.g., the number of agents or number of actua-
tors, that it can coordinate simultaneously (also referred to
as the “curse of dimensionality”). Although many approxi-
mate centralized planning strategies have been developed to
address such a challenge, they are usually difficult to imple-
ment and are constrained to specific task domains.

Biological systems have evolved to intelligently leverage
the strengths of both approaches. For example, human be-
ings use their brains to plan sophisticated tasks, e.g., arrang-
ing daily schedules, in a centralized manner, while millions
of cells regulate our body in a decentralized way. It would be
interesting to explore a mixed strategy that is composed of
both centralized planner and decentralized controllers. We
see that the type of decentralized strategies considered here
shows strengths in tasks that require constant adaptations to
a changing environment. This observation helps us to iden-
tify scenarios that can be solved more effectively with a dis-
tributed approach. One can then design a centralized planner
that oversees and coordinates decentralized tasks. For exam-
ple, a humanoid robot utilizes a centralized planner to plan
a trajectory to reach an object, and decentralized controllers
actuate a gripper that exploits distributed sensors to grasp
the object and self-adapt to sudden external impacts.
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Related Work
Several groups have designed decentralized algorithms for
multi-agent systems, such as modular robots (Yim, M. et.
al 2007), swarm robots (Dorigo et al. 2004), and sen-
sor networks (Lucarelli and Wang 2004; Akyildiz et al.
2002). While various decentralized approaches have been
proposed, most approaches lack theoretical treatment; fur-
thermore, most approaches are specialized for particular
tasks and difficult to generalize to other tasks or configura-
tions. In this work, we present a comprehensive framework
for analyzing the important properties of a class of decentral-
ized algorithms. We also show that an in-depth theoretical
analysis allows us to identify the scope of this approach and
to further generalize it to various multi-agent applications.

On the other hand, nearest neighbor rules have been
widely studied in control theory, including in consensus
problems (Olfati-Saber, Fax, and Murray 2007; Bertsekas
and Tsitsiklis 1989), flocking (Jadbabaie, Lin, and Morse
2002), and formation control (Fax and Murray 2004). We
bridge analytical results from these areas and further expand
their application domains by generalizing such control laws
(feedback function (ii)) to capture a wider range of systems
that can be viewed as sensor-actuator networks. Our task
specification also has similarities to distributed constraint
optimization (DCOP) (Yokoo 2001). The main distinction
is that DCOP uses discrete variables for agent states, while
agent states in this framework are continuous variables that
represent control parameters.

Perspectives, Discussions, and Conclusions
We have presented and analyzed a class of decentralized al-
gorithms for multi-agent tasks. We proved the convergence
properties and characterized how system size, topology, and
initial state can affect the performance. Several valuable
lessons were learned from this study. First, in decentral-
ized agent systems, it can be tedious to develop cooperation
mechanisms that allow agents to integrate dynamic environ-
ment information and act cooperatively. We have shown
here that bio-inspired control laws can be simple and ef-
fective alternatives to achieve such goals. One challenge
along this direction is how to effectively discover principles
that govern biological systems and translate them into al-
gorithms. More systematic ways of extracting control laws
from living systems are essential to achieve this goal. Sec-
ond, an important criterion for decentralized approaches is
convergence to the goal state. If we can model interactions
among agents in a matrix or another mathematical form, we
can apply rich theories to rigorously analyze such systems.

Third, many existing robotic systems can be framed as
multi-agent systems if we interface each component with the
appropriate capability, typically sensing. These systems can
exploit decentralized agent strategies, thereby acquiring the
associated scalability and robustness. Finally, in this frame-
work, we assume all agents play equally important roles
and receive sensory information of the same importance. In
spatially-distributed agent groups, some agents may obtain
privileged information based on their locations and need to
play a more important role in the group task. In (Yu, Wer-
fel, and Nagpal 2010), we propose the concept of implicit

leaderships that allow better-informed agents to effectively
influence group decisions based on local interactions. One
interesting topic in this direction is the design of an approach
to incorporate more complex local agent information while
preserving simplicity of the decentralized agent control.
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