AAAI Publications, Twenty-Fourth AAAI Conference on Artificial Intelligence

Font Size: 
A Layered Approach to People Detection in 3D Range Data
Luciano Spinello, Kai Oliver Arras, Rudolph Triebel, Roland Siegwart

Last modified: 2010-07-05


People tracking is a key technology for autonomous systems, intelligent cars and social robots operating in populated environments. What makes the task difficult is that the appearance of humans in range data can change drastically as a function of body pose, distance to the sensor, self-occlusion and occlusion by other objects. In this paper we propose a novel approach to pedestrian detection in 3D range data based on supervised learning techniques to create a bank of classifiers for different height levels of the human body. In particular, our approach applies AdaBoost to train a strong classifier from geometrical and statistical features of groups of neighboring points at the same height. In a second step, the AdaBoost classifiers mutually enforce their evidence across different heights by voting into a continuous space. Pedestrians are finally found efficiently by mean-shift search for local maxima in the voting space. Experimental results carried out with 3D laser range data illustrate the robustness and efficiency of our approach even in cluttered urban environments. The learned people detector reaches a classification rate up to 96% from a single 3D scan.

Full Text: PDF