AAAI Publications, Twenty-Sixth AAAI Conference on Artificial Intelligence

Font Size: 
Security Games with Limited Surveillance
Bo An, David Kempe, Christopher Kiekintveld, Eric Shieh, Satinder Singh, Milind Tambe, Yevgeniy Vorobeychik

Last modified: 2012-07-14

Abstract


Randomized first-mover strategies of Stackelberg games are used in several deployed applications to allocate limited resources for the protection of critical infrastructure. Stackelberg games model the fact that a strategic attacker can surveil and exploit the defender's strategy, and randomization guards against the worst effects by making the defender less predictable. In accordance with the standard game-theoretic model of Stackelberg games, past work has typically assumed that the attacker has perfect knowledge of the defender's randomized strategy and will react correspondingly. In light of the fact that surveillance is costly, risky, and delays an attack, this assumption is clearly simplistic: attackers will usually act on partial knowledge of the defender's strategies. The attacker's imperfect estimate could present opportunities and possibly also threats to a strategic defender.

In this paper, we therefore begin a systematic study of security games with limited surveillance. We propose a natural model wherein an attacker forms or updates a belief based on observed actions, and chooses an optimal response. We investigate the model both theoretically and experimentally. In particular, we give mathematical programs to compute optimal attacker and defender strategies for a fixed observation duration, and show how to use them to estimate the attacker's observation durations. Our experimental results show that the defender can achieve significant improvement in expected utility by taking the attacker's limited surveillance into account, validating the motivation of our work.


Full Text: PDF