AAAI Publications, Twenty-Sixth AAAI Conference on Artificial Intelligence

Font Size: 
Similarity Is Not Entailment — Jointly Learning Similarity Transformation for Textual Entailment
Ken-ichi Yokote, Danushka Bollegala, Mitsuru Ishizuka

Last modified: 2012-07-14


Predicting entailment between two given texts is an important task upon which the performance of numerous NLP tasks depend on such as question answering, text summarization, and information extraction. The degree to which two texts are similar has been used extensively as a key feature in much previous work in predicting entailment. However, using similarity scores directly, without proper transformations, results in suboptimal performance. Given a set of lexical similarity measures, we propose a method that jointly learns both (a) a set of non-linear transformation functions for those similarity measures and, (b) the optimal non-linear combination of those transformation functions to predict textual entailment. Our method consistently outperforms numerous baselines, reporting a micro-averaged F-score of 46.48 on the RTE- 7 benchmark dataset. The proposed method is ranked 2-nd among 33 entailment systems participated in RTE-7, demonstrating its competitiveness over numerous other entailment approaches. Although our method is statistically comparable to the current state-of-the-art, we require less external knowledge resources.


Textual Entailment

Full Text: PDF