AAAI Publications, Twenty-Sixth AAAI Conference on Artificial Intelligence

Font Size: 
Concept-Based Approach to Word-Sense Disambiguation
Ariel Raviv, Shaul Markovitch

Last modified: 2012-07-14


The task of automatically determining the correct sense of a polysemous word has remained a challenge to this day. In our research, we introduce Concept-Based Disambiguation (CBD), a novel framework that utilizes recent semantic analysis techniques to represent both the context of the word and its senses in a high-dimensional space of natural concepts. The concepts are retrieved from a vast encyclopedic resource, thus enriching the disambiguation process with large amounts of domain-specific knowledge. In such concept-based spaces, more comprehensive measures can be applied in order to pick the right sense. Additionally, we introduce a novel representation scheme, denoted anchored representation, that builds a more specific text representation associated with an anchoring word. We evaluate our framework and show that the anchored representation is more suitable to the task of word-sense disambiguation (WSD). Additionally, we show that our system is superior to state-of-the-art methods when evaluated on domain-specific corpora, and competitive with recent methods when evaluated on a general corpus.


natural language processing; web mining; machine learning

Full Text: PDF