AAAI Publications, Twenty-Sixth AAAI Conference on Artificial Intelligence

Font Size: 
Heart Rate Topic Models
Alexander Van Esbroeck, Chih-Chun Chia, Zeeshan Syed

Last modified: 2012-07-14

Abstract


A key challenge in reducing the burden of cardiovascular disease is matching patients to treatments that are most appropriate for them. Different cardiac assessment tools have been developed to address this goal. Recent research has focused on heart rate motifs, i.e., short-term heart rate sequences that are over- or under-represented in long-term electrocardiogram (ECG) recordings of patients experiencing cardiovascular outcomes, which provide novel and valuable information for risk stratification. However, this approach can leverage only a small number of motifs for prediction and results in difficult to interpret models. We address these limitations by identifying latent structure in the large numbers of motifs found in long-term ECG recordings. In particular, we explore the application of topic models to heart rate time series to identify functional sets of heart rate sequences and to concisely describe patients using task-independent features for various cardiovascular outcomes. We evaluate the approach on a large collection of real-world ECG data, and investigate the performance of topic mixture features for the prediction of cardiovascular mortality. The topics provided an interpretable representation of the recordings and maintained valuable information for clinical assessment when compared with motif frequencies, even after accounting for commonly used clinical risk scores.

Full Text: PDF