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Abstract

To specify a Bayes net (BN), a conditional probability ta-
ble (CPT), often of an effect conditioned on its n causes,
needs assessed for each node. Its complexity is generally ex-
ponential in n. Noisy-OR reduces the complexity to linear,
but can only represent reinforcing causal interactions. The
non-impeding noisy-AND (NIN-AND) tree is the first causal
model that explicitly expresses reinforcement, undermining,
and their mixture. It has a linear complexity, in terms of both
the number of parameters and the size of the tree topology. As
originally proposed, the model allows only binary effect and
cause variables. This work generalizes the model to multi-
valued effect and causes, and analyzes key properties.

Introduction

To specify a BN, a CPT needs to be assessed for each non-
root node. It is often advantageous to construct BNs along
the causal direction, in which case a CPT is the distribution
of an effect conditioned on its n causes. In general, assess-
ment of a CPT has the complexity exponential on n.

Noisy-OR (Pearl 1988) is the most well known technique
that reduces this complexity to linear. A number of exten-
sions have also been proposed such as (Heckerman & Breese
1996; Galan & Diez 2000; Lemmer & Gossink 2004). How-
ever, noisy-OR, noisy-AND (Galan & Diez 2000), as well
as related techniques, can only represent causal interactions
that are reinforcing (Xiang & Jia 2007).

The NIN-AND tree (Xiang & Jia 2007) extends noisy-OR
and provides the first causal model that explicitly expresses
reinforcing and undermining causal interactions, as well as
their mixture.! It requires specification of a set of proba-
bility parameters of a size linear in n, and a tree topology
also of a size linear in n, which expresses the types of causal
interactions among causes. The model uses default indepen-
dence assumptions to gain the efficiency, but is also flexible
enough to allow these assumptions to be relaxed. With the
assumptions relaxed incrementally and more parameters are
specified accordingly, any CPT can be encoded through a
NIN-AND tree.

As originally proposed (Xiang & Jia 2007), the effect and
cause variables in a NIN-AND tree are binary, which limits
its scope of applicability. In this work, we draw from the
generalization of noisy-OR from the binary case, such as
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'Being unaware of this work and its precursor, (Maaskant &
Druzdzel 2008) independently presented special cases of NIN-
AND tree models.
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(Henrion 1989; Diez 1993), and generalize the NIN-AND
tree model to multi-valued effect and cause variables.

The remainder of the paper is organized as follows: We
first review the binary NIN-AND tree models. We then in-
troduce our terminology on graded multi-causal events. The
basic processing units in a NIN-AND tree model, the NIN-
AND gates, are generalized to graded multi-causal events.
This is followed by the definition of the generalized NIN-
AND tree model. We analyze its properties in relation to
reinforcement and undermining, as well as the complexity
for specifying a CPT using such a model.

Background on Binary NIN-AND Trees

This section is mostly based on (Xiang & Jia 2007). An
uncertain cause is a cause that can produce an effect but
does not always do so. Denote a binary effect variable by e
and a set of binary cause variables of e by X = {c1, ..., cp }.
Denote e = true by e™ and e = false by e~. Similarly, for
each cause c¢;, denote ¢; = true by cj and ¢; = false by
c; .

A causal event refers to an event that a cause ¢; caused
an effect e to occur successfully when all other causes of
e are absent. Denote this causal event by e « ¢, and its
probability by P(e* « c;). The causal failure event, where
e is false when ¢; is true and all other causes of e are false,
is denoted by e™ + ;. Denote the causal event that a set
X ={c1,...,c,} of causes caused e by et « ¢, or
e’ « z*. Denote the set of all causes of e by C.

The CPT P(e|C) relates to probabilities of causal events
as follows: If C' = {c1,c2,c3}, then P(et|c],cy,cq) =
P(et « cf,cf). Cis assumed to include a leaky variable
(if any) to capture causes that we do not wish to represent
explicitly, and hence P(e™|ci, ¢y ,¢5) = 0.

Causes reinforce each other if collectively they are at least
as effective in causing the effect as some acting by them-
selves. If collectively they are less effective, then they un-
dermine each other. Note that if C' = {¢;, c2} and ¢; and ¢
undermine each other, then all the following hold:

P(efley,e) =0, Plelef,e5) >0, Pet|ey,e5) >0,
P(etlel,ef) < min(P(et|ef,e5), PleT e, ex)).
The following Def.1 defines the two types of causal in-

teractions generally. Note that reinforcement and undermin-

ing can occur between individual variables as well as sets of
variables. For instance, variables within each of two sets can

be reinforcing, while the two sets can undermine each other.
Hence, each W; in Def.1 is not necessarily a singleton.
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Definition 1 Let R = {Wy, Wa, ...} be a partition of a set
X of causes, R' C R be any proper subset of R, and Y =
Uw, e r' Wi. Sets of causes in R reinforce each other, iff

VR P(et —y") < Plet —z™).
Sets of causes in R undermine each other, iff
VR P(et —y*) > P(e" ).

Disjoint sets of causes Wi,
Jjunction iff

(€ i, wy) = (e Fwl) A A(e” o wy).
That is, collective failure is attributed to individual failures.
They also satisfy failure independence iff

P((e* £ wh) A A (e 4 wh)
= Pet £ wl) ... Pet £ wl). (1)

Disjoint sets of causes W1, ..., W,,, satisfy success con-

Jjunction iff

+ +
et —uwi, ..

—Z

eeey Wiy, satisfy failure con-

,w;—(e+<—wl)/\ A (et —wh).

That is, collective success requires individual effectiveness.
They also satisfy success independence ift

P((e" —wi) A A e —wh)

Pet —wl) ... Pet «—w}).

(@)

It can be shown that causes are reinforcing when they sat-
isfy failure conjunction and independence, and they are un-
dermining when they satisfy success conjunction and inde-
pendence. Undermining can be modeled by a direct NIN-
AND gate as shown in the left of Fig. 1. Its root nodes (top)

e-—c} e~—cy || e~cT e*+cp
+ ¢ + + + i + +
e-—C1,...,Cp € -+Cq,...,Cn

Figure 1: Direct (left) and dual (right) NIN-AND gates

are causal success events of single causes, and its leaf node
(bottom) is the causal event in question, whose probability
is computed by Eqn. (1). Reinforcement can be modeled by
a dual NIN-AND gate (right). Its root nodes (top) are causal
failure events of single causes, and its leaf node (bottom)
is the causal failure event in question, whose probability is
computed by Eqn. (2).

By combining direct and dual NIN-AND gates and orga-
nizing them into a tree topology, both reinforcement and un-
dermining can be expressed in a single model, called a NIN-
AND tree. Consider an example where C' = {¢1, 2,3},
c1 and c3 undermine each other, but collectively they rein-
force co. Assuming the default conjunction and indepen-
dence, their causal interaction, relative to the event

+ + ot
e <—Cl702703,
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e'~—cie ee-—C3

+
+ o+ €~7C2
€-—Cy, C3

le+<+c1+, Ca C3

Figure 2: A NIN-AND tree causal model.

can be expressed by the NIN-AND tree shown in Fig. 2. The
top gate is direct and the bottom gate (the leaf gate) is dual.
The link downward from node e* « ¢, c5 has a white oval
end (a negation link) and negates the event. All other links
are forward links. Given an NIN-AND tree, the probability

of the leaf event can be computed by Algorithm 1.

Algorithm 1 GetCausalEventProb(T)
Input: A NIN-AND tree T of leaf v and leaf gate g, with root
probabilities specified.
for each node w directly inputting to g, do
if P(w) is not specified,
denote the sub-NIN-AND-tree with w as the leaf by T.,,;
P(w) = GetCausalEventProb( Tw);
if (w, g) is a forward link, P'(w) = P(w);
else P'(w) =1 — P(w);
return P(v) =[], P'(w);

For the example in Fig. 2, after the following are specified,
Pt —¢f) =085, Pet —¢f) =08, Plet —cf) =07,

the probability P(et + ¢, cq,cf) = 0.081 can be de-
rived. Using other NIN-AND tree models simplified from
Fig. 2, the CPT in Table 1 can be derived. P(e*|c], 5, c3)

Table 1: The CPT of an example NIN-AND tree model.

Plet|ey,c5,c5) | 0 P(eJr ci,cy,c3) | 0.595
P(et|cl,cy,c7) | 0.85 | Ple® cf,c2 ,03 ) | 0.97
P(etler,cy,c5) | 0.8 | PleT|ey ,02 .G ) 1094
P(etlcy,cy,c5) | 07 | Plet|e],eq,cd) | 0.919

is less than either P(et|c],cy,c5) or P(et|el,cy,cq)
(undermining).  P(et|cf,cf,cd) is larger than both
P(etlel, ey, cd)and P(eT|cy, cf, ¢y ) (reinforcement).

Graded Multi-Causal Events

Let e be a multi-valued effect variable whose finite domain
is denoted D, = {e" e!,,...,e"}, where > 1. The value
€? (through the superscript index 0) represents the absence
of the effect condition. Each value e’/ with a higher super-
script index 7 > 0 represents the effect condition at a higher
intensity. For instance, if e represents the fever condition
of a patient, it may have a domain {c?, ¢}, c?} which corre-
sponds to

7 ’L’ ’L

{normal,low fever, high fever}.

Notation e < ¢ is well defined, when 0 < j < 7, to denote
ec{e el ...,/ }, andsois e > e,



Let ¢; (i = 1,2,...) be a multi-valued uncertain cause,
whose finite domain is denoted D; = {c?,c},c?,...}. The
value ¢! represents the absence of the condition signified by
the variable ¢;, and each value ¢} with a higher superscript
index j > O represents the condition at a higher intensity.
Variables such as e and ¢; are often referred to as graded
(Diez 1993).

We denote a set of multi-valued cause variables of effect
e (multi-valued) as X = {cy, ..., ¢, }. The set of all causes
of e is denoted by C. Set C'is assumed to include a leaky
variable (if any) to capture causes not represented explicitly.

For multi-valued causes and effect, a graded singular
causal success is an event that a cause c¢; with value cg
(j > 0) caused the effect e to occur at a value e* (k > 0)
or higher, when every other cause c,, of e has the value ¢,
(absent). Condition £ > 0 means that the effect must be
present. Denote this event by

eZek<—{cz} or simply e > e* <—cg

and its probability by P(e > e* « ¢]).

A graded multi-causal success involves a set X (| X| > 1)
of causes of e, where each ¢; € X has a value ¢/ (j > 0).
That is, causes in X collectively caused the effect e to occur
at a value e* (k > 0) or higher, when every other cause
¢m € C'\ X has the value ¢!,. We denote the multi-causal
success by

e>eb —{d', .. ey orsimply e>eb — L cn
or by the (somewhat abused) vector notion
+

)

eZe’“—g

where superscript + signifies that, for each ¢; € X, its value
> .

A graded singular causal failure refers to an event where
e < ef (k > 0) when a cause ¢; has a value ¢! (j > 0)and
every other cause c,, of e has the value c?,. It is a failure
event in the sense that ¢; fails to produce the effect with an
intensity e* or higher. We denote the failure event by

e<el — cf .

In a graded multi-causal failure, a set X (| X| > 1) of
causes of e are active when the effect e < e® (k > 0). That
is, e < e*, each ¢; € X has a value cz? (7 > 0), and each
¢m € C'\ X has the value 2. We denote the failure event
by _

e<el — Aty dr
or by the vector notion

e < ek — g"'.

Note that our terminology on multi-valued causal events
differs from those based on inhibitors, e.g., (Pearl 1988;
Heckerman & Breese 1996), and is more coherent with those
in (Lemmer & Gossink 2004; Xiang & Jia 2007), although
the latter deal with only binary cases.

The negation of event

e> el — Aty .., adr

is
e<el — .., dr
and vice versa.

Probabilities of graded causal events can be converted to
conditional probabilities and vice versa through the follow-
ing proposition, whose proof is straightforward. For a set
Y of causes, if ¢; = c? for each ¢; € Y, we denote the

instantiation of Y by 3°.

Proposition 1 Let e be an effect, C = X UY (X NY =0)
be the set of all causes of e, X be instantiated to zt, andY
be instantiated to QO. Then the following hold, where k > 0.

1. Ple>ef «—at)=1—-Ple<eF «z7).
2. P(elzt,y’) =1—P(e > e! —zt).

3. P(eMzt,y?) = P(e > " —z).

4. Fork <n,

P(eF|lzT,y%) = P(e > " — 27)—P(e > "' — ™).
5. Ple>ek e at) = Z?:k P(e*|z™,y°).

The first equation in Proposition 1 deals with negation of
a causal event. The next three convert causal probabilities to
conditional probabilities. The last one converts conditional
probabilities to a causal probability. These conversions are
useful in processing the probabilities of input and output
events of generalized NIN-AND trees as will be presented
below.

Generalized NIN-AND Gates

Definition 2 Disjoint sets of causes W1, ..., W, of effect e
satisfy graded success conjunction iff

e>ef —wfl, .. w

:(eZekwa)/\.../\(ezek&y:;),
where k > 0.

Definition 3 Disjoint sets of causes W1, ..., W,,, of effect e
satisfy graded success independence iff events

+

ezeklev B

k
e>e’ —w)

ceey

are independent of each other, where k > 0. That is, the
following equation holds,
Ple>e" —wf,...,w))

= Ple>ef —wf)...Ple>e" —wt). 3)

We depict the interaction of causes that satisfy graded
success conjunction and graded success independence by a
graphical model as shown in Fig. 3. The success conjunc-
tion is represented by the AND gate. The success indepen-
dence is signified by the disconnection of input events other
than through the gate. Since the causes are uncertain causes,
the AND gate is noisy. Common noisy-AND gates, e.g.,
(Galan & Diez 2000), are impeding in that the probability
of a causal event is zero unless the set of active causes is
equal to C. The probability of the output event of the gate
in Fig. 3 is determined by Eqn. (3) from probabilities of the



e>ek-—cli e>ek-— ¢
u
.

eZekk C# ""7Cl!1n

Figure 3: A generalized direct NIN-AND gate.

input events, no matter X = C or not. Hence, the gate is
non-impeding. To distinguish it from the binary case (see
the background section) as well as the case introduced be-
low, we term the gate in Fig. 3 as a generalized direct non-
impeding noisy-AND gate or a generalized direct NIN-AND
gate.

Definition 4 Disjoint sets of causes W1, ..
satisfy graded failure conjunction iff

. W, of effect e

e < ek — yf, ---,M:Z
=(e<ef —wh) A Ale<e —wl),
where k > 0.

Definition 5 Disjoint sets of causes W1, ..., Wy, of effect e
satisfy graded failure independence iff failure events

+

e<ek<—w1, . +

k
e<e’ —wh

are independent of each other, where k > 0. That is, the
following equation holds,

Ple <e® —wf,..,wl)
Ple<e —wl)..Ple<e —wth). &)
We depict the interaction of causes that satisfy graded fail-

ure conjunction and graded failure independence by a graph-
ical model as shown in Fig. 4. The failure conjunction is

: ;
e<ek=— ¢! e<e~—c;

.

i j
e<ek<ﬁ C{W IEERT] nn

Figure 4: A generalized dual NIN-AND gate.

represented by the AND gate, and the failure independence
is signified by the disconnection of input events other than
through the gate. The probability of the output event of the
gate is determined by Eqn. (4) from probabilities of the input
events. The gate in Fig. 4 differs from that in Fig. 3 in that
all input and output events are causal failure events. Hence,
we refer to it as a generalized dual NIN-AND gate.

Def. 2 through 5 are relative to sets of causes. Figs. 3 and
4 are special cases where these sets are singletons. A more
general example appears in Fig. 5 below.
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Reinforcing and Undermining Properties

We analyze the reinforcing and undermining behaviors of
generalized NIN-AND gates, which differ from those of bi-
nary NIN-AND gates. We first give a more refined definition
of reinforcing and undermining.

Definition 6 Let D, be the domain of effect e and S, be a
subset of D., where either S, contains a single element e*
(k > 0), or it contain all values > e*.

Let R = {W;, W, ...} be a partition of a set X of causes
of effect e, R C R be any proper subset of R, and Y =
Uw,er' W;. Denote V.=C\ X and Z = C\Y.

Sets of causes in R reinforce each other relative to S.,
iff

VR' P(e € S|y, 2%) < P(e € Sc|z™,2°).
Sets of causes in R undermine each other relative to S, iff
VR' P(e € S|y, 2%) > P(e € Sc|z™,2°).

Note that Def. 6 is defined based on conditional proba-
bilities rather than (causal) probabilities of causal events as
Def. 1. This is because reinforcement and undermining are
best described through comparison of conditional probabili-
ties. In the binary case, the conversion between conditional
and causal probabilities is trivial, but it is less so in the multi-
valued case.

In the following, we show that a generalized direct NIN-
AND gate models undermining relative to certain S,’s.

Proposition 2 Let W1, ..., Wy, be disjoint sets of causes of
effect e and e > el «— wf, ey, €2 el — wj; be the
root (input) events of a generalized direct NIN-AND gate g.
Let P(e > e" « w{,...,w}) be the probability of the leaf
(output) event of g. Then, fori =1, ..., m, we have

Ple>e" — wl,..,wh) < Ple>e" — w).

Proposition 2 says that a generalized direct NIN-AND
gate models undermining relative to the most intensive value
of the effect, i.e., S. = {e"}. It follows directly from
Eqn. (3).

Proposition 3 Let W1, ..., Wy, be disjoint sets of causes of
effect e and e > el — wf, v, e> el — w,‘; be the
root (input) events of a generalized direct NIN-AND gate g.
Let P(e > €' « w,...,w}) be the probability of the leaf
(output) event of g. Then, fori =1,...,m, we have
Ple>e' —wf,..,wh) < Ple>e' —wl).

Proposition 3 says that a generalized direct NIN-AND
gate models undermining relative to the collection of active
values of the effect, i.e., Se = {e!,...,e"}. It follows di-
rectly from Eqn. (3).

Consider an example where C' = {c1,c2}, |D1]
|D2| = |D.| = 3, and

P(et|c1, cd) = 0.3, P(e?|c], c3) = 0.45,
P(e|c), cd) = 0.35, P(e?|c?, c3) = 0.22,
P(e'd}, c3) = 0.4, P(e?|c), c3) = 0.5.
Using suitable generalized direct NIN-AND gates with all
root events singular, we can derive the following by Eqn. (3),

P(e > et|ct,c3) = 0.675,

27



P(e > ¢€%|cl, c3) = 0.225,
from which we obtain the following by Proposition 1,
P(e°|c1, ¢3) = 0.325,
P(e'|c1, c3) = 0.45,
P(e?|c1, c3) = 0.225.
Undermining holds relative to S. = {e?} because
P(e?|c1,c3) = 0.225 < 0.45 = P(e?|cq, cy)

and 0.225 < 0.5 = P(e?|c?,c2). It also holds relative to
Se = {e!, e?} because

P(e>ellcl,3) = 0.675 < 0.75 =
and 0.675 < 0.9 = P(e > e'|cY, c3). However, undermin-
ing does not hold relative to S. = {e'} because

P(e'le},c3) = 0.45 > 0.3 = P(e'|c], )

and 0.45 > 0.4 = P(et|c?, c3).

Similarly, we show below that a generalized dual NIN-
AND gate models reinforcement relative to both the most
intensive value of the effect and the collection of active val-
ues of the effect.

P(e > e'ley, c3)

Proposition 4 Let W1, ..., W, be disjoint sets of causes of
effect e and e > ek — wi", vy €2 ek — w;; be the
root (input) events of a generalized dual NIN-AND gate g,
where either k = nork = 1. Let P(e > e — w{, ..., w})
be the probability of the leaf (output) event of g. Then, for
i =1,...,m, we have

Ple> e —wl, ... wh) > Ple>e" — wy).

Consider the above example. Using suitable generalized
dual NIN-AND gates with all root events singular, we can
derive the following by Eqn. (4),

P(e < é'|ct, c3) = 0.025,
P(e < €?|c},c3) = 0.275,
from which we obtain the following by Proposition 1,
P(°ct, 3) = 0.025,
P(e'|ci, c3) = 0.25,
P(e?|c1, c3) = 0.725.
Reinforcement holds relative to S, = {e?} because
P(elet,B) = 0.725 > 0.45 = P(e?[c}, )

and 0.725 > 0.5 = P(e?|c},c3). It also holds relative to
S. = {e!, e?} because

P(e > et|ct,c3) = 0.975 > 0.75 = P(e > e'|cf, c3)
and 0.975 > 0.9 = P(e > e'|c{, c3). However, reinforce-
ment does not hold relative to S, = {e'} because

P(e'le},c3) = 0.25 < 0.3 = P(e'le], )

and 0.25 < 0.4 = P(e!|cY, c3).

In summary, a generalized direct NIN-AND gate ex-
presses undermining and a generalized dual NIN-AND gate
expresses reinforcement, relative to both the most intensive
value and the collection of active values of the effect.
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Generalized NIN-AND Trees

The following definition generalizes the binary NIN-AND
tree models to multi-valued effect and causes.

Definition 7 A generalized NIN-AND tree is a directed
tree for a multi-valued effect e and a set X = {c1,...,cn}
of multi-valued causes, parameterized by a boundary value
e¥ (k > 0) of e and an instantiation = = {c]', ..., clr} of
X, where j; >0 (1 =1,...,n).

1. There are two types of nodes. An event node (a black
oval) has an in-degree < 1 and an out-degree < 1. A gate
node (a generalized NIN-AND gate) has an in-degree > 2
and an out-degree 1.

2. There are two types of links, each connecting an event
and a gate along the input-to-output direction of gates. A
forward link (a line) is implicitly directed. A negation
link (with a white oval at one end) is explicitly directed.

3. Each terminal node is an event labeled by a graded causal
evente > e « E* ore < eF EJF. There is a single
leaf (no child) where y©™ = x, and the gate it connects

to is the leaf gate. For each root (no parent; indexed by
i)yl Cat, y*_‘ﬂy‘F =0forj#k and ),y =z

Inputs to a gate g are in one of two cases:

(a) Each is elther connected by a forward link to a node
labeled e > e g or by a negation link to a node

4.

labeled e < e* — g‘“. The output of g is connected by
a forward link to a node labeled e > ek — Uiy;“.

(b) Each is either connected by a forward link to a node
labeled e < e f, or by a negation link to a node

labeled e > e* — g‘“. The output of g is connected by
a forward link to a node labeled e < e* «— Uiy;“.

Fig. 5 is an example of a generalized NIN-AND tree for
C= {01702703} where |De| = |D1| = |D2| = |D3| = 3.

exe®~— c? exe?—C3

2 2
e>e?-—c2 c2 2

o o<e?- c? c2 c2

Figure 5: A generalized NIN-AND tree.

The probability of the leaf event of a generalized
NIN-AND tree can be evaluated using Algorithm 1 Get-
CausalEventProb. From the model in Fig. 5, P(e > e —
cl) = 0.85, P(e > e? « ¢3) = 0.8, and P(e > % «

c3) = 0.7, it can be derived

2 2

Ple < e? « 3 c3,c3) = 0.081.

Using Proposition 1, the probabilities of root events in a
generalized NIN-AND tree can be obtained from conditional



probabilities that involve only a single active cause (¢; # ¢!
and c; = cg for j # 4). After the probability of the leaf event
is derived for each relevant graded causal event, the corre-
sponding CPT can be obtained by applying Proposition 1 to
the probabilities of the leaf events.

Properties of Generalized NIN-AND Trees

Theorem 1 establishes that generalized NIN-AND trees
model both reinforcement and undermining correctly.

Theorem 1 Let T be a generalized NIN-AND tree where the
probability for each root node is specified in the range (0, 1).
Let P(v) be returned by GetCausalEventProb(T).

Then P(v) combines the given probabilities according to
reinforcement and undermining expressed by the topology
of T, with each generalized direct NIN-AND gate corre-
sponding to undermining and each generalized dual NIN-
AND gate corresponding to reinforcement, relative to both

Se ={e"}and S’ = D, \ {e°}.

Proof: GetCausal EventProb evaluates first the output
event for each gate node whose inputs are root events. If
the root events are graded causal successes, then the gate is
a generalized direct NIN-AND gate. By Propositions 2 and
3, the probability of the output event reflects the result of
undermining, relative to both S, and S’. Otherwise, the root
events are graded causal failures, and the gate is a general-
ized dual NIN-AND gate. By Proposition 4, the probability
of the output event reflects the result of reinforcement, rela-
tive to both S, and S.

After the evaluation, root nodes (and links incident
to them) no longer participate in further evaluations and
can be deleted. The remaining subtree is still a gen-
eralized NIN-AND tree with the depth reduced by one.
GetCausal Event Prob repeats the above computation un-
til the depth reduces to zero. The statement is true for the
evaluation at each depth and hence the theorem holds. [

The following theorem establishes that specification of
CPT using generalized NIN-AND trees is efficient.

Theorem 2 Let C = {cy, ..., ¢y, } be the set of all causes of
effect e that satisfy the graded success (failure) conjunction
and independence. Denote |D.| byn + 1 and |D;| by 5+ 1
(i =1,...,n). Let P* be a set of conditional probabilities

P*={P(*|?, ..., .,

Then, the following hold.

1. The CPT P(e|X) can be derived from P* using general-
ized NIN-AND trees.

2. The complexity to specify P* is O(n (81 + ... + Bn)).

Proof: Other than P(e|c),...,c?) = 1, each other condi-
tional probability in the CPT P(e|X) can be derived from
probabilities of output events of at most two generalized
NIN-AND trees through Proposition 1. For each probability
in P*, the effect is present and exactly one cause is active.
P* contains all such probabilities. Hence, P* is sufficient to
specify the probabilities of input events of all relevant gener-
alized NIN-AND trees through Proposition 1, and condition
1 follows.

Ay, ) | k> 0,m > 0}.
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Assuming n = (; for ¢ = 1,...,n, the above complex-
ity becomes O(n n?) and is hence linear in n. A number
of other important properties of generalized NIN-AND tree
models are mentioned briefly below although their elabora-
tion is beyond space limit.

Although the probability of each graded multi-causal
event requires the use of a separate generalized NIN-AND
tree, all of them can be derived from a single generalized
NIN-AND tree. Hence, the complexity to specify the neces-
sary tree topologies is also linear in n. Default conjunction
and independence assumptions embedded in the model can
be relaxed if necessary through additional numerical param-
eters than what is included in Theorem 2. By doing so, any
CPT can be encoded through a generalized NIN-AND tree.
Finally, generalized NIN-AND trees revert to binary NIN-
AND trees when all variables are binary.

Condition 2 amounts to a simple counting.

Conclusion

In this work, we generalize the binary NIN-AND tree causal
models to multi-valued effect and causes. The generalized
NIN-AND trees model explicitly reinforcement and under-
mining among causes relative to the most intensive level as
well as the collection of active levels of effect. Specification
of CPTs using generalized NIN-AND trees is shown to be
efficient. Hence, this result will allow numerical parameters
in Bayes nets to be specified efficiently through the intuitive
concepts of reinforcement and undermining.
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