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Abstract  
Feedback is critical in both human and computer tutoring 
because it has directive, facilitative, and motivational 
functions. An understanding of the feedback strategies of 
expert human tutors is essential for ITSs that aspire to 
model such tutors. Although previous research suggests that 
expert tutors provide indirect and delayed feedback, 
methodological concerns limit the generalizability of these 
findings. In order to alleviate some of these methodological 
concerns, we conducted a fine grained analysis of the 
feedback strategies of 10 expert tutors across 50 sessions. 
We analyzed the likelihood that tutors provide positive, 
negative, and neutral feedback immediately following 
students’ correct, partially correct, error ridden, vague, or 
no answers. Our results support the conclusion that expert 
tutors feedback is direct, immediate, discriminating, and 
largely domain independent. We discuss the implication of 
our results for the development of an ITS that aspires to 
model expert tutors. 

Introduction 
Over the past 25 years Intelligent Tutoring Systems (ITSs) 
have emerged as powerful tools to promote active 
knowledge construction particularly at deeper levels of 
comprehension (Psotka, Massey, & Mutter, 1988; Sleeman 
& Brown, 1982). The ITSs that have been successfully 
implemented and tested have produced learning gains with 
an average effect size of one sigma, which is roughly 
equivalent to one letter grade (Corbett, 2001; VanLehn et 
al., 2007). When compared to classroom instruction and 
other naturalistic controls, the 1.0 effect sizes obtained by 
ITSs is superior to the .39 effect for computer-based 
training, .50 for multimedia, and .40 effect obtained by 
novice human tutors (Cohen, Kulik, & Kulik, 1982; 
Corbett, 2001; Dodds & Fletcher, 2004; Wisher & 
Fletcher, 2004). It is however less than the 2 sigma effect 
obtained by expert tutors for mathematics in naturalistic 
contexts (Bloom, 1984). The naturalistic setting is 
important because ITSs and accomplished tutors have 
produced equivalent learning gains when face-to-face 
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communication is replaced with computer-mediated 
communication (VanLehn et al., 2007). 
 It might be the case that the 1.0 sigma effect in learning 
gains represents an upper bound for ITSs that model 
novice human tutors. These tutors generally have a little 
more content knowledge than the tutee and have received 
little to no training on effective pedagogical methods. 
Novice human tutors do not adhere to ideal tutoring 
models or employ sophisticated methods or strategies that 
have been identified in the ITS literature (Graesser, Person, 
& Magliano, 1995; McArthur, Stasz, & Zmuidzinas, 1990; 
Person, Graesser, Magliano, & Kreuz, 1994). It might be 
the case, however, that expert tutors use ideal models and 
sophisticated strategies. Hence, building ITSs that model 
the strategies of expert tutors might be the key to cracking 
the barrier between the 1.0 sigma effect obtained by 
current ITSs and the 2.0 sigma effect attributed to expert 
tutors. 
 Building an ITS that models the strategies of expert 
tutors at a fine-grained level requires an analysis of the 
pedagogical models they adhere to, their question asking 
strategies, their models of student knowledge, their 
motivational tactics, and how they handle students’ errors 
and misconceptions. One important aspect of the expert 
tutoring puzzle, and the focus of the current paper, is the 
nature of their feedback. Our goal is to analyze the 
feedback strategies of expert human tutors with an eye for 
integrating any insights gleaned into an ITS modeled after 
expert tutors.  

Nature of Expert Tutors’ Feedback 
Feedback is critical in both human and computer tutoring 
because it is directive (i.e., tells students what needs to be 
fixed), facilitative (i.e., helps students conceptualize 
information), and has motivational functions (Black & 
William, 1998; Lepper & Woolverton, 2002; Shute, 2008). 
Feedback strategies of tutors have received considerable 
attention from educational researchers, with a handful of 
meta-analyses devoted exclusively to the effectiveness of 
feedback as a pedagogical and motivational tool (Azevedo 
& Bernard, 1995; Bangert-Drowns, Kulik, Kulik, & 
Morgan, 1991; Shute, 2008). 
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 Feedback is generally conceived to vary along 
directness and timing dimensions. Although most of the 
studies have focused on novice human tutors,  a precious 
few studies have assessed the nature of expert tutors’ 
feedback (Fox, 1991, 1993; Kulik & Kulik, 1988; Littman, 
Pinto, & Soloway, 1990; McKendree, 1990). These are 
briefly described below. 

Directness of Feedback 
Directness of feedback pertains to the degree to which 
tutor’s explicitly provide negative feedback to student 
errors and positive feedback to student accomplishments. 
The claim has been made that expert tutors rarely provide 
direct feedback to students (Lepper, Aspinwall, Mumme, 
& Chabay, 1990; Lepper & Woolverton, 2002; Merrill, 
Reiser, Ranney, & Trafton, 1992). In a corpus of expert 
tutors (N=2), Lepper and colleagues found the tutors to be 
indirect in their feedback regardless of whether the 
feedback was positive or negative. They suggest that good 
tutors avoid overtly stating negative feedback or even 
implying that the student has made an error. Direct 
feedback is replaced with a series of increasingly direct 
questions in an effort to elicit the correct response from the 
student. When probed, the expert tutors attributed their 
indirect style to enhancing motivation and self-efficacy. 
Surprisingly, Lepper and colleagues have also found 
positive feedback to be delivered in an indirect style, 
presumably in an attempt to lessen the evaluative nature of 
academics.  
 Similarly, Merrill et al. (1992) compared the strategies 
of human tutors to computer tutors, finding critical 
differences in the delivery of feedback. Human tutors were 
more subtle and flexible in their delivery. They asked 
probing questions of varying levels of directness to reveal 
student errors instead of providing direct and diagnostic 
feedback (Merrill et al., 1992).  

Timing of Feedback 
The second important feedback dimension pertains to the 
timing of feedback delivery (Shute, 2008). Immediate 
feedback occurs right after the student has responded to the 
tutor’s question, while delayed feedback would occur 
sometime later. It should be noted that there are 
pedagogical advantages to both immediate and delayed 
feedback and comparisons between the feedback 
mechanisms have produced mixed results (Shute, 2008). 
 It has been claimed that the size of student errors and 
how tutors classify the errors (productive or unproductive) 
impacts the timing of the feedback (Lepper & Woolverton, 
2002; Merrill et al., 1992). Hence, errors that would block 
students from ever reaching a solution are immediately 
handled, whereas less threatening errors are monitored 
carefully but are not immediately addressed. Nevertheless, 
findings from these studies seem to indicate that expert 
tutors do not provide direct feedback and  imply that they 
delay their feedback or provide none at all. 

Research Goals 
In summary, it is generally acknowledged that expert tutors 
provide indirect and delayed feedback. However, before 
we accept these conclusions too cavalierly it is important 
to highlight some methodological problems that threaten 
our understanding of expert tutoring. First, several of the 
studies on expert tutoring fail to indicate how many expert 
tutors were included in the analyses (Aronson, 2002; Fox, 
1991, 1993; Merrill et al., 1992). Second, all of the 
reported studies included six or fewer expert tutors, with 
the majority including only one or two experts (Glass, 
Kim, Evens, Michael, & Rovick, 1999; Hay & Katsikitis, 
2001; Lajoie, Faremo, & Wiseman, 2001). Third, the same 
sample of expert tutors is used in multiple studies. For 
example, the same five tutors are included in the Graesser 
et al., Jordan and Siler, and VanLehn et al. studies 
(Graesser, Person, Harter, & Group, 2000; Jordan & Siler, 
2002; VanLehn et al., 2004). Putnam’s tutors are included 
in the Merrill et al. studies (Merrill et al., 1992; Putnam, 
1987). A fourth problem with these studies is that it is 
unclear as to what constitutes an expert tutor. In some of 
the studies, the expert tutors are Ph.D.s with extensive 
teaching and/or tutoring experience (Evens, Spitkovsky, 
Boyle, Michael, & Rovick, 1993; Glass et al., 1999; 
Graesser et al., 2000; Jordan & Siler, 2002), whereas in 
others the experts are graduate students that work in 
tutoring centers (Fox, 1991, 1993).  
 These are some of the problems that warranted an 
investigation of the feedback strategies of a large expert 
tutoring corpus that alleviates the aforementioned 
methodological concerns. In particular, we investigated 
whether the feedback of 10 expert tutors over 50 
naturalistic tutorial sessions was direct and immediate or 
indirect and delayed. We also investigated if feedback 
strategies were modulated by domain (math versus 
science). 

Expert Tutoring Corpus 
The corpus consisted of 50 tutoring sessions between 
students and expert tutors on algebra, geometry, physics, 
chemistry, and biology. The students were all having 
difficulty in a science or math course and were either 
recommended for tutoring by school personnel or 
voluntarily sought professional tutoring help. 
 The expert tutors were recommended by academic 
support personnel from public and private schools in a 
large urban school district. All of the tutors had long-
standing relationships with the academic support offices 
that recommended them to parents and students. The 
criteria for being an expert tutor were (a) have a minimum 
of five years of one-to-one tutoring experience, (b) have a 
secondary teaching license, (c) have a degree in the subject 
that they tutor, (d) have an outstanding reputation as a 
private tutor, and (e) have an effective track record (i.e., 
students who work with these tutors show marked 
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improvement in the subject areas for which they receive 
tutoring). 
 Fifty one-hour tutoring sessions were videotaped and 
transcribed. To capture the complexity of what transpires 
during a tutoring interaction, two coding schemes were 
developed to classify every tutor and student dialogue 
move (Person, Lehman, & Ozbun, 2007). A total of 47,256 
dialogue moves were coded in the 50 hours of tutoring.  
 The Tutor Coding Scheme consisted of 24 categories 
inspired by previous tutoring research on pedagogical and 
motivational strategies and dialogue moves (Cromley & 
Azevedo, 2005; Graesser et al., 1995; Lepper & 
Woolverton, 2002). The moves consisted of various forms 
of information delivery (direct instruction, explanation, 
example, etc.), questions and cues to get the student to do 
the talking (hints, prompts, pumps, forced choices, etc.), 
feedback (positive, negative, neutral), motivational moves 
(general motivation statement, solidarity statement), 
humor, and off-topic conversation. 
 A 16 category coding scheme was also developed to 
classify all student dialogue moves. Some of the student 
move categories captured the qualitative nature of a student 
dialogue move (e.g., correct answer, partially-correct 
answer, error-ridden answer), whereas others were used to 
classify student questions and actions (e.g., reading aloud 
or solving a problem). 
 Although detailed descriptions of the coding schemes 
are beyond the scope of this paper, of relevance to this 
paper is the coding of feedback and answer moves. Student 
answers were coded as (a) no answers (e.g. “Umm.” 
“Mmm.”), (b) error ridden answers (e.g. “Prokaryotes are 
human and eukaryotes are bacteria”), (c) vague answers 
(e.g. “Because it helps to, umm, you know”), (d) partial 
answers (e.g. “It has to do with the cells”), and (e) correct 
answers (e.g. “In meiosis it starts out the same with one 
diploid”). These five answer categories comprised 28.6% 
of all student moves. 14% of students’ answers were 
correct, 5.7% partial, 4.6% vague, and 2.8% error-ridden. 
No answers occurred 1.5% of the time. 
 There were three feedback categories that comprised 
15.6% of all tutor moves. The categories were positive 
(e.g., “correct”, “right”, “exactly”), negative (e.g., “no.” 
“uh uh.”), and neutral (e.g., “I see”), comprising 12.5%, 
1.6%, and 1.5% of tutor moves, respectively. 
 Four trained judges coded the 50 transcripts on the 
dialogue move schemes. Cohen’s kappas were computed to 
determine the reliability of their judgments. The kappa 
scores were .92 for the tutor moves and .88 for the student 
moves. 

Data Analysis 
The analyses began by creating a time series of student and 
tutor moves for each session. On average, there were 945 
moves per time series (SD = 343). Time series ranged from 
467 to 1870 moves with a median of 925 moves.  
 We used the likelihood metric (D'Mello, Taylor, & 
Graesser, 2007) to compute the likelihood of a transition 

between any two moves (see Eq. 1). The metric allows us 
to compute the likelihood of a transition between any two 
moves after correcting for the base rate of .  It 
includes a normalization factor (i.e., the denominator) so 
that any two likelihoods can be compared even if the prior 
probabilities of the moves differ; i.e.,  and 

 can be compared even if, . This 
comparison is compromised with mere conditional 
probabilities (i.e., ). 
 

 (Eq. 1) 

   
 According to Equation 1, if , we can 
conclude that move  follows above and beyond the 
prior probability of experiencing  (i.e., above chance 
levels). If, on the other hand, , then 

 follows  at the chance level. Furthermore, if 
, then the likelihood of move  

following is lower than the base rate of experiencing 
 (i.e., below chance).  

 Transition likelihoods were computed for all possible 
combination of moves resulting in a 40 × 40 matrix for 
each session. Two-tailed one sample t-tests were used to 
test whether the mean likelihood for any given transition 
was significantly greater than (excitatory), less than 
(inhibitory), or equal to zero (no relationship between 
immediate and next move). 

Results  
Our data analysis strategy allowed us to assess the 
likelihoods of four classes of transitions: 
L(Tutor→Student), L(Student→Tutor), L(Tutor→Tutor), 
and L(Student→Student). However, the current paper 
focuses on one particular set of transitions: L(StudentAnswer 
→TutorFeedback). Table 1 presents mean transition 
likelihoods for the 15 TutorFeedback→StudentAnswer 
transitions. 

Table 1. Mean transition likelihoods 

Student 
Answer 

 Tutor Feedback 

 Negative Neutral Positive 

No  -.007* .006 -.041 
Error  .291** .038* -.075** 
Vague  .013* .016 .020 
Partial  .016 .067** .135** 
Correct  -.008** .015* .359** 

*p < .05,**p < .001 
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Direct vs. Indirect Feedback 
We examined the patterns of tutor feedback to evaluate 
whether expert tutors provided direct feedback. Feedback 
patterns for each of the five answer categories are 
described below. 
 
Error-Ridden Answers. Tutors provide negative (d = 1.2) 
and neutral (d = .35), but not positive (d = -1.68) feedback 
to error-ridden answers. In addition to the one-sample t-
tests that independently compare each transition to chance 
(zero), we also performed a 3-way repeated measures 
ANOVA to test for differences in the feedback strategies. 
The ANOVA indicated that the main effect for feedback 
was significant and quite robust, F(2, 96) = 65.3, Mse = 
.026, p < .001, partial η2 = .576. Bonferroni-posthoc tests 
revealed the following feedback ordering at the p < .05 
significance level: Negative > Neutral > Positive. 
 
Partially-Correct Answers. It appears that tutors provide 
neutral (d = .52) and positive (d = .59) feedback to 
partially-correct answers (see Table 1). Negative feedback 
followed partially-correct answers at chance rates. An 
ANOVA comparing the likelihood of the three feedback 
moves given partially-correct answers was significant, F(2, 
98) = 7.15, p = .001, partial η2 = .127. Bonferroni post-hoc 
tests indicated that the likelihoods of neutral and positive 
feedback following a partially-correct answer were on par 
and significantly greater than negative feedback.  
 
Correct Answers. Tutors provide positive (d = 2.04) and 
neutral (d = .35), but not negative (d = -1.14) feedback to 
correct answers. An ANOVA comparing the likelihood of 
the three feedback moves after correct answers was 
significant, F(2, 98) = 182.7, p < .001, partial η2 = .789. 
Bonferroni-posthoc tests revealed the following ordering of 
feedback patterns: Positive > Neutral > Negative.  
 
No Answers and Vague Answers. The t-tests indicated 
that tutors do not provide feedback when students do not 
provide an answer. A similar pattern is observed for vague 
answers. Although negative feedback appears to follows 
vague answers, the effect was quite small (d = .3). 
Furthermore, an ANOVA comparing the three feedback 
categories when the student provided a vague answer was 
not significant, p = .868. Hence, similar to no answers, it 
appears tutors do not provide feedback to vague answers. 

Immediate vs. Delayed Feedback 
We investigated whether tutors provided immediate or 
delayed feedback by assessing whether a student’s answer 
at time  was more likely to be followed by one of the 
feedback categories or any other tutor move at  (i.e. 
the turn immediately following the student's answer). The 
analyses proceeded by grouping the three feedback moves 
into one general feedback category and collapsing the 
remaining 24 tutor moves into a non-feedback category. 
Paired-sample t-tests then compared the likelihood of a 

feedback move versus a non-feedback move immediately 
following a student answer. 
 The results indicated that correct answers were 
significantly more likely to be followed by a feedback 
move than a non-feedback move (LCOR→FDB = .371, 
LCOR→NO FDB = .054, p < .001, d = 1.41). Error-ridden 
answers were also more likely to be followed by feedback 
compared to another tutor move (LERR→FDB = .280, 
LERR→NO FDB = .105, p = .085, d = .47).  
 In contrast, no answers and vague answers were 
significantly more likely to be followed by a non-feedback 
move than a feedback move (no answer: LNO→FDB = -.042, 
LNO→NO FDB = .646, p < .001, d = 1.92; vague answer: 
LVAG→FDB = .051, LVAG→NO FDB = .370, p < .001, d = 1.22). 
 Finally, feedback and non-feedback moves were equally 
likely to follow partial answers (LPAR→FDB = .226, LPAR→NO 

FDB = .242, p = .876, d = .04). 

Domain Differences in Feedback Profiles 
The expert tutoring corpus included sessions on a number 
of math and science domains such as physics, chemistry, 
biology, algebra, and geometry. It might be the case that 
the feedback strategies of the expert tutors are modulated 
by the tutoring domain. Hence, we analyzed whether 
feedback profiles differed across the 31 math and 19 
science sessions. 
 Two 5 × 2 (answer × domain) ANOVAs with answer 
(no, error-ridden, vague, partially-correct, correct) as a 
within subjects factor and domain (math or science) as a 
between subjects factor did not yield a significant answer × 
domain interaction for negative feedback (p = .927) or 
positive feedback (p = .323). Hence, domain differences do 
not impact the delivery of positive or negative feedback 
(see Figure 1A and 1B). 
 However, there was a significant answer × domain 
interaction for neutral feedback, F(4, 148) = 3.59, p = .008, 
partial η2 = .088. Bonferroni post-hoc tests indicated that 
there was a significant domain difference in how tutors 
provided feedback to partially-correct answers but not any 
of the other answer types. It appears, that tutors are more 
likely to provide neutral feedback to partially-correct 
answers in science than math (LMATH = .013, LSCI = .114, p 
= .001, d = 1.04). 

General Discussion 
Our fine-grained analysis of the feedback strategies of 
presumably the largest expert tutoring corpus indicates that 
expert tutors’ feedback is direct, immediate, and 
discriminating at least when students provide error-ridden, 
partially-correct, and correct answers. Their feedback is 
direct because they primarily provide negative feedback to 
incorrect answers, positive feedback to correct answers, 
and both neutral and positive feedback to partially-correct 
answers. Their feedback is immediate because compared to 
any other move it is negative feedback that immediately 
follows error-ridden answers and positive feedback that 
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immediately follows correct answers. Furthermore, about 
half the time positive feedback immediately follows 
partially-correct answers. Their feedback is discriminating 
because it is sensitive to differences in answer types (see 
Figure 1); a strategy not adopted by novice tutors (Person 

et al., 1994). 

Figure 1. Answer × Domain Interaction 

 It appears that the feedback strategies of expert tutors 
transcend domain differences for negative and positive 
feedback. However, they are more likely to provide neutral 
feedback to partially-correct answers in science compared 
to math. This finding is intuitively plausible because when 
compared to math, science answers are fuzzier because the 
distinction between correct and partially-correct answers is 
more subtle.  
 The expert tutors do not provide feedback when students 
provide vague answers or do not provide an answer 
altogether. Expert tutoring feedback is discriminatory and 
evaluative, hence, one would not expect feedback when the 
student does not provide an answer or hedges and provides 
a vague answer. Although not highlighted in this paper, it 
appears that expert tutors respond to both vague and no 
answers by either (a) providing the correct answer, (b) 
simplifying the problem, or (c) providing a hint. 

 We are currently in the process of developing a tutoring 
system (Guru) for high school biology based on the tactics, 
actions, and dialogue of expert human tutors. The 
pedagogical and motivational strategies of Guru are 
informed by a detailed computational model of expert 
human tutoring. The computational model transcends 
various levels of granularity from tutorial modes (e.g., 
lectures, modeling, scaffolding), to collaborative patterns 
of dialogue moves within individual modes (e.g., 
information-elicitation, information-transmission), to 
individual dialogue moves (e.g., direct instruction, positive 
feedback, solidarity statement), to the language, facial 
expression, intonation, and gestures of tutors. 
Understanding how expert tutors are direct, immediate, and 
discriminating with their feedback will guide Guru’s 
feedback strategies.  Whether a direct and immediate 
approach towards feedback will enhance learning 
compared to more indirect and delayed strategies awaits 
further technological development and empirical testing. 

Acknowledgements 
This research was supported by the by the Institute of 
Education Sciences, U.S. Department of Education, 
through Grant R305A080594 and by the U. S. Office of 
Naval Research Grant N00014-05-1-0241. The opinions 
expressed are those of the authors and do not represent 
views of the funding agencies. 

References 
Aronson, J. (2002). Improving academic achievement: 

Impact of psychological factors on education. San 
Diego: Academic Press. 

Azevedo, R., & Bernard, R. M. (1995). A meta-analysis of 
the effects of feedback in computer-based 
instruction. Journal of Educational Computing 
Research, 13(2), 111-127. 

Bangert-Drowns, R. L., Kulik, C. L. C., Kulik, J. A., & 
Morgan, M. (1991). The Instructional-Effect of 
Feedback in Test-Like Events. Review of 
Educational Research, 61(2), 213-238. 

Black, P., & William, D. (1998). Assessment and 
classroom learning. Assessment in Education: 
Principles, Policy & Practice, 5(1), 7-74. 

Bloom, B. (1984). The 2 sigma problem: The search for 
methods of group instruction as effective as one-
to-one tutoring. Educational Researcher, 13(6), 4-
16. 

Cohen, P., Kulik, J., & Kulik, C. (1982). Educational 
outcomes of tutoring: A meta-analysis of findings. 
American Educational Research Journal, 19(2), 
237-248. 

Corbett, A. (2001). Cognitive computer tutors: Solving the 
two sigma problem. Paper presented at the Eighth 
International Conference on User Modeling. 

508



Cromley, J., & Azevedo, R. (2005). What Do Reading 
Tutors Do?: A Naturalistic Study of More and 
Less Experienced Tutors in Reading. Discourse 
Processes, 40(2), 83-113. 

D'Mello, S., Taylor, R., & Graesser, A. (2007). Monitoring 
affective trajectories during complex learning. In 
D. McNamara & G. Trafton (Eds.), Proceedings 
of the 29th Annual Cognitive Science Society (pp. 
203-208). Austin, TX: Cognitive Science Society. 

Dodds, P., & Fletcher, J. (2004). Opportunities for new 
"smart" learning environments enabled by next-
generation web capabilities. Journal of 
Educational Multimedia and Hypermedia, 13(4), 
391-404. 

Evens, M., Spitkovsky, J., Boyle, P., Michael, J., & 
Rovick, A. (1993). Synthesizing tutorial 
dialogues. Paper presented at the Proceedings of 
the 15th Annual Conference of the Cognitive 
Science Society, Boulder. 

Fox, B. (1991). Cognitive and interactional aspects of 
correction in tutoring. In P. Goodyear (Ed.), 
Teaching knowledge and intelligent tutoring. 
Norwood, NJ: Ablex. 

Fox, B. (1993). The human tutorial dialogue project. 
Hillsdale, NJ: Lawrence Erlbaum Associates. 

Glass, M., Kim, J., Evens, M., Michael, J., & Rovick, A. 
(1999). Novice vs. expert tutors: A comparison of 
style. Paper presented at the Midwest Artificial 
Intelligence and Cognitive Science Conference, 
Bloomington, IN. 

Graesser, A., Person, N., Harter, D., & Group, T. T. R. 
(2000). Teaching tactics in Autotutor. Paper 
presented at the ITS 2000 Proceedings of the 
Workshop on Modeling Human Teaching Tactics 
and Strategies, Montreal, Canada. 

Graesser, A., Person, N., & Magliano, J. (1995). 
Collaborative dialogue patterns in naturalistic 
one-to-one tutoring. Applied Cognitive 
Psychology, 9(6), 495-522. 

Hay, P., & Katsikitis, M. (2001). The 'expert' in problem-
based and case-based learning: necessary or not? 
Medical Education, 35(1), 22-26. 

Jordan, P., & Siler, S. (2002). Student initiative and 
questioning strategies in computer mediated 
human tutoring dialogues. Paper presented at the 
ITS Workshop on Empirical Methods for Tutorial 
Dialogue Systems. 

Kulik, J., & Kulik, C. (1988). Timing of Feedback and 
Verbal-Learning. Review of Educational 
Research, 58(1), 79-97. 

Lajoie, S., Faremo, S., & Wiseman, J. (2001). Tutoring 
strategies for effective instruction in internal 
medicine. International Journal of Artificial 
Intelligence and Education, 12, 293-309. 

Lepper, M., Aspinwall, L., Mumme, D., & Chabay, R. 
(1990). Self-perception and social perception 
processes in tutoring: Subtle social control 
strategies of expert tutors. In J. Olson & M. Zanna 

(Eds.), Self inference and social inference: The 
Ontario symposium (Vol. 6, pp. 217-237). 
Hillsdale, NJ: Erlbaum. 

Lepper, M., & Woolverton, M. (2002). The wisdom of 
practice: Lessons learned from the study of highly 
effective tutors. In J. Aronson (Ed.), Improving 
academic achievement: Impact of psychological 
factors on education (pp. 135-158). Orlando, FL: 
Academic Press. 

Littman, D., Pinto, J., & Soloway, E. (1990). The 
knowledge required for tutorial planning: An 
empirical analysis. Interactive Learning 
Environments, 1, 124-151. 

McArthur, D., Stasz, C., & Zmuidzinas, M. (1990). 
Tutoring Techniques in Algebra. Cognition and 
Instruction, 7(3), 197-244. 

McKendree, J. (1990). Effective feedback content for 
tutoring complex skills. Human Computer 
Interaction, 5, 381-413. 

Merrill, D., Reiser, B., Ranney, M., & Trafton, J. (1992). 
Effective Tutoring Techniques: A Comparison of 
Human Tutors and Intelligent Tutoring Systems. 
The Journal of the Learning Sciences, 2(3), 277-
305. 

Person, N., Graesser, A., Magliano, J., & Kreuz, R. (1994). 
Inferring What the Student Knows in One-to-One 
Tutoring - the Role of Student Questions and 
Answers. Learning and Individual Differences, 
6(2), 205-229. 

Person, N., Lehman, B., & Ozbun, R. (2007). Pedagogical 
and Motivational Dialogue Moves Used by Expert 
Tutors. Paper presented at the 17th Annual 
Meeting of the Society for Text and Discourse, 
Glasgow, Scotland. 

Psotka, J., Massey, D., & Mutter, S. (1988). Intelligent 
tutoring systems: Lessons learned: Lawrence 
Erlbaum Associates. 

Putnam, R. (1987). Structuring and Adjusting Content for 
Students - a Study of Live and Simulated Tutoring 
of Addition. American Educational Research 
Journal, 24(1), 13-48. 

Shute, V. (2008). Focus on Formative Feedback. Review of 
Educational Research, 78(1), 153-189. 

Sleeman, D., & Brown, J. (Eds.). (1982). Intelligent 
tutoring systems. New York: Academic Press. 

VanLehn, K., Graesser, A., Jackson, G., Jordan, P., Olney, 
A., & Rosé, C. (2004). Natural language tutoring: 
A comparison of human tutors, computer tutors 
and text. Submitted to Cognitive Science. 

VanLehn, K., Graesser, A., Jackson, G., Jordan, P., Olney, 
A., & Rose, C. P. (2007). When are tutorial 
dialogues more effective than reading? Cognitive 
Science, 31(1), 3-62. 

Wisher, R., & Fletcher, J. (2004). The case for advanced 
distributed learning. Information & Security: An 
International Journal, 14, 17-25. 

 
 

509




